Reshaping tensors depend on directly matching individual dimensions to
their corresponding dim in the `torch.view` reshape dimensions. This
involves decoupling dynamic dimensions from their static counterparts
and support cleanup / canonicalization.
This commit adds the OnnxToTorch lowering for the Mish, Softplus,
HardSwish, Trilu, ThresholdedRelu op
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
The previous conversions for AtenAdaptiveAvgPool1dOp and
AtenAdaptiveMaxPool2dOp are refactored into a general templated
conversion that works for all of the AtenAdaptive...PoolNdOp's.
New support is added for the following ops:
1. AtenAdaptiveMaxPool1d
2. AtenAdaptiveMaxPool3d
3. AtenAdaptiveAvgPool3d
Support is also provided for passing inputs without batch dimensions.
For example, applying adaptive_avg_pool2d to an input tensor of rank 3.
After [pytorch #118162](https://github.com/pytorch/pytorch/pull/118162)
gets down to torch-mlir, I'll add a test for AdaptiveMaxPool1d with
return_indices (which will pass with that upstream fix).
---------
Co-authored-by: James Newling <james.newling@gmail.com>
This adds support for converting DynamicQuantizeLinear from torch-onnx
to torch.
I could not get an e2e test to pass, since there seems to be some issues
with uint8 casting somewhere lower in the pipeline. For example
compiling with IREE for llvm-cpu, I would get either the correct zero
point (if zp < 128) or the correct zero-point minus 256 (if zp >= 128).
The output tensor seems to always return a tensor of zeros, which also
occurs when running uint8 examples through QuantizeLinear.
Edit: the first problem can be resolved by casting the output back to
uint8 on output, the second problem is resolved with PR #3018
Added support for dynamic shapes in `flattenusingints` op in tosa
dialect. Due to this some Argmax tests pass
This PR fixes this issue https://github.com/llvm/torch-mlir/issues/3004
The following tests pass after this PR
```
1. "ArgmaxIntModule_basic"
2. "ArgmaxIntModule_multiple_maxs"
3. "ArgmaxModule_basic"
```
Reduce mean lowerings did not succesfully lower to `linalg` via torched.
There were two separate paths that could be consolidated to a single
simpler pass. This resulted in a significant improvement in test
coverage.
If the broadcast shape is length-1 at a dim while `?` in the input dim
then we need to broadcast to the dynamic dim. This is equivalent to
taking a max of two dimensions.
This folds small version of the tensor-scalar comparison operators as
they are commonly used for shape computations. This includes le, lt, ge,
gt, eq, and ne.
The current padding operation was not functional for dynamic shapes.
Updated and enabled tests so that onnx.pad tests pass.
Work TBD for reflection padding.
Set PyTorch and TorchVision version to nightly release 2024-03-07.
This commit also removes the deprecated constraints API:
342e7929b8
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This mostly copy-pastes the reduce minimum implementation to reduce max
to improve test coverage. We also improve the aten lowering for min/max
dim for unsigned types.
The addition of an e2e test is actually provided in the Shark-Testsuite.
This adds 2 test cases for the gridsampler e2e test.
Also as intended there were some items found which needed correction, so
the Gridsampler op has also a change.
Current implementation depends on using `aten.view` which has issues
inferring tensor collapse/expand operations during the lowering to
`linalg`. Using flatten and unsqueeze better infers what the later
reshape behavior.
Add e2d support for `aten.linalg_norm` by decompose it to
`aten.linalg_vector_norm`.
Lowering to `aten.linalg_matrix_norm` is still unsupported.
To Test:
`python -m e2e_testing.main -v`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
A bunch of small fixes are interlinked and trigger crashes if not
addressed as a group. This includes:
- aten view when expand from a rank-0 tensor
- slice folder with negative indices
- `aten._shape_as_tensor` folder on a rank-0 tensor
- `aten.cat` of a tensor with a length-0 tensor
The corrective transpose at the end is computed incorrectly. Is it
actually computin the inverse transpose. Inverting the permutations
fixes the issue.
Torch lowering only supported the most recent version. Refactored the
lowering so more easily handle default values and optional operands /
attributes.
Added Support for float dtype in in torch.arange in TOSA Dialect
This resolves the following issue :-
https://github.com/llvm/torch-mlir/issues/2762
The following test cases are passing after this change
1. ArangeDtypeIntModule_basic
2. ArangeFloatModule_basic
3. ArangeNegativeStartFloatModule_basic
4. ArangeStartFloatModule_basic
5. ArangeStartNegativeStepFloatModule_basic
6. ArangeStartOutDtypeModule_basic
7. ArangeStartStepFloatModule_basic
---------
Co-authored-by: James Newling <james.newling@gmail.com>
There is no reason to treat `ConstantOfShape` as a specialized import
any as there exists a onnx-to-torch equivalent. Dropping the import
coding and adding support for resource conversion substantially
increases test coverage for dynamically shaped tests.
Strided slicing can occur with a negative stride. In these cases we need
to bound end differently. This included removing a function that was
generating bad limits.
Onnx slice lowering used arange needlessly instead of directly
constructing the constant dimension values. This makes lowerings to
linalg struggle as multiple folders are required to get what is a
constant index value.