The MacOS builders are having linking trouble with the extension library.
Until it's fixed, all support for op extensions is disabled. It should be
easy to restore once the issue is resolved.
The function `AffineMap::inferFromExprList` does not work if the first
vector of expressions is empty, because it uses these expressions to
obtain the context. This prevented `aten.permute` from working for
inputs of 0-rank. This commit adds support for 0-rank inputs.
PyTorch allows new operators to be registered dynamically in modules.
Torch-mlir already makes it fairly straightforward to add support for
new operators, and this commit just extends that support to allow new
PyTorch ops to come from a external module.
This does *not* allow ops to be dynamically loaded into torch-mlir.
Torch-mlir must still be compiled with support built-in.
Add a `_torch_mlir_custom_op_example` subpackage to `torch_mlir` which
registers an demonstration op. It will not be imported by default when
importing torch_mlir. It's strictly for testing and documentation.
Adds an end-to-end test for the `torch_mlir_custom_op_example::identity` op.
With all these changes, we should now be actively testing PyTorch extension
support with all future patches.
Now that upstream exposes them nicely, we can use them.
I noticed that we had added stuff into the upstream_shape_helpers.py
file (which was supposed to stay pristine), so some more shape functions
need to be upstreamed.
Going forward, all shape functions should be upstreamed similar to
https://github.com/pytorch/pytorch/pull/76889 instead of added in this
file.
This commit adds lowering of `aten.div.Tensor_mode` op.
This commit also fixes formatting for the test file elementwise.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit decomposes `aten.baddbmm` op into `aten.bmm`,
`aten.mul.Scalar`, and `aten.add.Tensor` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
use_tracing=True was behaving unexpectedly because the handling of
single arguments was happening after the torch.jit.trace call.
This also fixes the check to specifically test for a torch.Tensor or
TensorPlaceholder so that both lists and tuples would be correctly
handled.
This commit adds the decomposition of `aten.adaptive_avg_pool2d` op into
`aten.avg_pool2d` op. The current decomposition only supports cases where
input size is equal to the output size.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function. It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.
There exist several opportunities to make this lowering optimal and
robust. For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf. For L1 norms, we don't need to raise
each element to the power 1.0. Similarly, L2 norms could benefit from
strength reduction. Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
We do this by inroducing a TensorPlaceholder class, which can be used to
specify dynamic sizes. Internally, we canonicalize all example inputs
to TensorPlaceholder's.
This commit also adds some basic testing, which was missing before.
In addition to updating the llvm-project submodule, this patch also:
1. updates shape functions and tests so that `func` and `call`
operations refer to the `func` dialect
2. avoid duplicate registration of dialects
The op `aten.rand_like` was missing a shape function, unit tests, and
the `dtype` argument was being ignored in its decomposition. This
commit fixes all three things.
A user might want to avoid the extra layer of multiprocessing libary for
debugging purpose. In such cases, the -s flag can be used to force
sequential execution.
This commit adds support for aten.max_pool2d, aten.max_pool2d_with_indices,
and aten.avg_pool2d op for the cases where ceil_mode = true.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The preserve memory specifies that `If any of the input tensors is in channels_last format,
operator output should be in channels_last format` and hence can be
added as is in aten_empty_like op.
Fix the type promotion code for scalar only operation to return
TorchType which is the type tracked in ValueKnowledge.scalarType.
- Fix `getPromotedResultScalarType` to return Torch type.
- Add `getBuiltInTypeForTorchScalar` helper to convert scalar type
to builtin type before passing to the next level type promotion
helper `updateResultTypeState`.
- Add `setScalarType` helper to make setting ValueKnowledge.scalarType
easier.
This commit adds lowering of `aten.ge.float`, `aten.ge.float_int`,
`aten.ne.float_int`, `aten.gt.float_int` and `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py and scalar_comparison.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The main changes are:
- Added `ValueKnowledge.scalarType` to track scalar type information.
- Added `ValueKnowledge.kind` to indicate the value kind.
- Modified the meet and join helper functions. The ValueKnowledge has
slightly more complicated state now so the meet and join function need
to look at the `kind` field in addition to just the type field.
- This commit adds support for `aten.mean.dim` op.
- It also adds a new test script `stats.py` for statistics related ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This also has a fix for the adjustment of types of TupleConstruct
inputs, which I found when using this new functionality on a model.
Some scenarios in tracing create situations where the output of
TupleConstruct has a more refined type than the inputs.
This introduces a helper `adjustStaticInformationForValues` which
subsumes the `derefineValues` helper and the tensor static information
adjustment we were doing.
This commit decomposes `aten.to.dtype_layout` op into `aten.to.dtype` op.
This commit also fixes the formatting for the file type_conversion.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds lowering of `aten.masked_fill.Scalar` op.
This commit also fixes the formatting of the file constant_alloc.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit fixes the `ConstantPad2dStaticModule` test case by adding
the lowering of `aten.pad` operation. Previously the test case
mapped to `aten.constant_pad_nd` operation.
The `aten.pad` now decomposes into `aten.constant_pad_nd` operation.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is BFloat16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
1. This commit adds lowering of "while-like" prim loop to scf.while
operation.
2. Adds lowering of "for-like" prim loops to scf.for operation.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
Fix the inplace update tensor issue we had
where the torchscript execution would update the input value inplace
resulting the actual test not being able to see the original input
value.
This commit adds more test cases `aten::index_put` op.
This commit also fixes formatting issues with the test file index_put.py
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds lowering of `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
Compiling torch-mlir against a source version of PyTorch or an official
wheel compiled with the new C++ stdlib ABI fails, as torch-mlir doesn't
know how to set compiler flags to remain compatible. This changes the
way torch-mlir looks at PyTorch and tries to more closely match the ABI
settings, regardless of whether it's the common official wheel or some
other version.
I wasn't able to find exactly what frontend situation created it, but
`torch.jit.trace` will sometimes create functions where the
`jit::Block`'s param node has refined tensor types. So we need to adjust
the function's formal param types to those refined types.
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
* Add oneshot release snapshot for test/ondemand
Add some build scripts to test new release flow based on IREE.
Wont affect current builds, once this works well we can plumb it
in.
Build with manylinux docker
* Fixes a few issues found when debugging powderluv's setup.
* It is optional to link against Python3_LIBRARIES. Check that and don't do it if they don't exist for this config.
* Clean and auditwheel need to operate on sanitized package names. So "torch_mlir" vs "torch-mlir".
* Adds a pyproject.toml file that pins the build dependencies needed to detect both Torch and Python (the MLIR Python build was failing to detect because Numpy wasn't in the pip venv).
* Commented out auditwheel: These wheels are not PyPi compliant since they weak link to libtorch at runtime. However, they should be fine to deploy to users.
* Adds the --extra-index-url to the pip wheel command, allowing PyTorch to be found.
* Hack setup.py to remove the _mlir_libs dir before building. This keeps back-to-back versions from accumulating in the wheels for subsequent versions. IREE has a more principled way of doing this, but what I have here should work.
Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
Added the dynamic registration of return function to the execution
engine. This makes sure that different/multiple return types are supported.
Also, updated the .style.yapf indentation to 4.
This makes it much easier to convert models and hides all the
ClassAnnotator complexity.
This also adds a new example `torchscript_resnet18_all_output_types.py`
which shows the ResNet18 IR for all output types.
Also,
- This moves `run_pipeline_with_repro_report` to
`torch_mlir.compiler_utils`.
That way, downstreams don't have to duplicate this list.
Also, remove "external config" feature, since it is subsumed by just
importing the test suite.
* shape: add shape transfer function for aten.neg
Prior to this patch, the list of shape transfer functions did not
include `aten.neg`, which resulted in errors like below.
```
error: unsupported by backend lowering: tensor with unknown rank or dtype
note: see current operation: %0 = "torch.aten.neg"(%arg0) :
(!torch.vtensor<[256,256],f32>) -> !torch.vtensor<*,f32>
note: this is likely due to a missing shape transfer function in shape_lib_gen.py
```
This patch fixes the problem by adding a shape transfer function to
reflect the point-wise nature of this operation.
* linalg: add translation of aten.neg operation
This patch adds a translation rule to lower `aten.neg` operations on
tensors to an `arith.negf` operation wrapped inside a `linalg.generic`
operation. This patch also adds a rudimentary test.
This commit adds lowering of `aten::max_pool2d_with_indices_backward` op.
This commit also fixes formatting issues in basic.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
NB: `shouldnt_normalize2` and `shouldnt_normalize3` currently XPASS i.e., args *will* successfully normalize despite being incorrect due to an [upstream bug](https://github.com/pytorch/pytorch/issues/75342).
This commit adds the following support to the op `nll_loss_backward`:
- `input` tensor can be rank-1
- `weight` parameter
- `reduction` parameter
- `target`, `grad_output`, `total_weight` can be rank-0
- Checks that input tensors are of the expected type