This patch makes some rudimentary changes to torch-mlir's use of MLIR
Python bindings to work with the most recent LLVM code. We can perhaps
do better by being more selective in what we link against, instead of
using `MLIRPythonExtension.RegisterEverything`.
This commit adds the decomposition for `aten.var.dim` op.
This commit also make changes in the decomposition for `aten.var` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
Remove all the libtorch downloads. If the user sets
-DTORCH_MLIR_USE_INSTALLED_PYTORCH=OFF then just build from src.
Doesn't change developer workflow since we still default to local
PyTorch versions.
TEST: Build and verify all tests (except one xfail quant) pass on linux
This commit does three things:
1. Reverts some of the shape lib changes merged in
https://github.com/llvm/torch-mlir/pull/844
2. Updates the signature of `aten.sum_dim_IntList` that was recently
updated in
23bdb570cf
3. Replaces `aten.zero.functional` with `aten.zero`, updated in 960758b0b7
`aten.select_scatter` op.
This commit adds:
1. Lowering of `aten.slice_scatter` op into `tensor.insert_slice`
op.
2. Decomposes the `aten.select_scatter` op into `aten.slice_scater`
op.
Signed-Off-By: Prateek Gupta <gprateek93@gmail.com>
Temporarily revert to using PyTorch binaries until source builds
are ready to land.
TORCH_MLIR_USE_INSTALLED_PYTORCH can be turned to OFF if you want
to link against libtorch and/or source builds.
On my local machine, `unzip` didn't exist (producing a "command not
found" error), but CMake ignored the error. Although the build did
succeed (because it found a previously-built version of libtorch), it
seems better to abort builds on such failures, so this patch checks the
return code of all external process invocations.
Along similar lines, this patch also updates the shell scripts in
`build_tools` to extensively use double-quoting to prevent unintentional
word splitting or globbing. Since some of the scripts execute `rm`
while using shell variables, this patch also adds the preamble `set -u`
to abort execution if an undefined variable is referenced, so that we
reduce the chances of executing `rm -rf /` if the path expression
happens to refer to an undefined variable.
TorchScript nodes like `prim::Load` and `prim::Store` aren't supported
in torch-mlir because they can't be lowered to backends, but such nodes
can occur in the TorchScript IR.
This patch adds a rudimentary translation from such nodes to
corresponding ops in the Torch dialect. Since we expected such nodes to
go away during lowering because of the SymbolDCE pass, this patch does
not add code to lower these ops beyond the Torch dialect.
This commit fixes the shape function for `index.Tensor`, adding
support for multiple index tensors and `None`s in the indices
list. This commit also adds support for input tensors of rank greater
than 1. The lowering for `index.Tensor` still has the the limitation
that only a single index tensor along the first dimension of the input
tensor is supported.
Prior to this patch, the torch dialect included `AtenTriuOp` for
computing the upper triangular part of the input matrix, but there was
no code for lowering the op to the linalg dialect.
This patch adds code to generate a `linalg.generic` operation that
compares indices (computed using `linalg.index`) to choose between zero
or the original value (using `arith.select`). The lowering fails if the
number of dimensions are less than two. This patch also adds a few
end-to-end tests.
The MacOS builders are having linking trouble with the extension library.
Until it's fixed, all support for op extensions is disabled. It should be
easy to restore once the issue is resolved.
PyTorch allows new operators to be registered dynamically in modules.
Torch-mlir already makes it fairly straightforward to add support for
new operators, and this commit just extends that support to allow new
PyTorch ops to come from a external module.
This does *not* allow ops to be dynamically loaded into torch-mlir.
Torch-mlir must still be compiled with support built-in.
Add a `_torch_mlir_custom_op_example` subpackage to `torch_mlir` which
registers an demonstration op. It will not be imported by default when
importing torch_mlir. It's strictly for testing and documentation.
Adds an end-to-end test for the `torch_mlir_custom_op_example::identity` op.
With all these changes, we should now be actively testing PyTorch extension
support with all future patches.
Now that upstream exposes them nicely, we can use them.
I noticed that we had added stuff into the upstream_shape_helpers.py
file (which was supposed to stay pristine), so some more shape functions
need to be upstreamed.
Going forward, all shape functions should be upstreamed similar to
https://github.com/pytorch/pytorch/pull/76889 instead of added in this
file.
This commit adds lowering of `aten.div.Tensor_mode` op.
This commit also fixes formatting for the test file elementwise.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit decomposes `aten.baddbmm` op into `aten.bmm`,
`aten.mul.Scalar`, and `aten.add.Tensor` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
use_tracing=True was behaving unexpectedly because the handling of
single arguments was happening after the torch.jit.trace call.
This also fixes the check to specifically test for a torch.Tensor or
TensorPlaceholder so that both lists and tuples would be correctly
handled.
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function. It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.
There exist several opportunities to make this lowering optimal and
robust. For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf. For L1 norms, we don't need to raise
each element to the power 1.0. Similarly, L2 norms could benefit from
strength reduction. Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
We do this by inroducing a TensorPlaceholder class, which can be used to
specify dynamic sizes. Internally, we canonicalize all example inputs
to TensorPlaceholder's.
This commit also adds some basic testing, which was missing before.
In addition to updating the llvm-project submodule, this patch also:
1. updates shape functions and tests so that `func` and `call`
operations refer to the `func` dialect
2. avoid duplicate registration of dialects
The op `aten.rand_like` was missing a shape function, unit tests, and
the `dtype` argument was being ignored in its decomposition. This
commit fixes all three things.
Fix the type promotion code for scalar only operation to return
TorchType which is the type tracked in ValueKnowledge.scalarType.
- Fix `getPromotedResultScalarType` to return Torch type.
- Add `getBuiltInTypeForTorchScalar` helper to convert scalar type
to builtin type before passing to the next level type promotion
helper `updateResultTypeState`.
- Add `setScalarType` helper to make setting ValueKnowledge.scalarType
easier.
This commit adds lowering of `aten.ge.float`, `aten.ge.float_int`,
`aten.ne.float_int`, `aten.gt.float_int` and `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py and scalar_comparison.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The main changes are:
- Added `ValueKnowledge.scalarType` to track scalar type information.
- Added `ValueKnowledge.kind` to indicate the value kind.
- Modified the meet and join helper functions. The ValueKnowledge has
slightly more complicated state now so the meet and join function need
to look at the `kind` field in addition to just the type field.
This also has a fix for the adjustment of types of TupleConstruct
inputs, which I found when using this new functionality on a model.
Some scenarios in tracing create situations where the output of
TupleConstruct has a more refined type than the inputs.
This introduces a helper `adjustStaticInformationForValues` which
subsumes the `derefineValues` helper and the tensor static information
adjustment we were doing.
This commit decomposes `aten.to.dtype_layout` op into `aten.to.dtype` op.
This commit also fixes the formatting for the file type_conversion.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds lowering of `aten.masked_fill.Scalar` op.
This commit also fixes the formatting of the file constant_alloc.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit fixes the `ConstantPad2dStaticModule` test case by adding
the lowering of `aten.pad` operation. Previously the test case
mapped to `aten.constant_pad_nd` operation.
The `aten.pad` now decomposes into `aten.constant_pad_nd` operation.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is BFloat16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
This commit adds lowering of `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
Compiling torch-mlir against a source version of PyTorch or an official
wheel compiled with the new C++ stdlib ABI fails, as torch-mlir doesn't
know how to set compiler flags to remain compatible. This changes the
way torch-mlir looks at PyTorch and tries to more closely match the ABI
settings, regardless of whether it's the common official wheel or some
other version.
I wasn't able to find exactly what frontend situation created it, but
`torch.jit.trace` will sometimes create functions where the
`jit::Block`'s param node has refined tensor types. So we need to adjust
the function's formal param types to those refined types.
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
* Add oneshot release snapshot for test/ondemand
Add some build scripts to test new release flow based on IREE.
Wont affect current builds, once this works well we can plumb it
in.
Build with manylinux docker
* Fixes a few issues found when debugging powderluv's setup.
* It is optional to link against Python3_LIBRARIES. Check that and don't do it if they don't exist for this config.
* Clean and auditwheel need to operate on sanitized package names. So "torch_mlir" vs "torch-mlir".
* Adds a pyproject.toml file that pins the build dependencies needed to detect both Torch and Python (the MLIR Python build was failing to detect because Numpy wasn't in the pip venv).
* Commented out auditwheel: These wheels are not PyPi compliant since they weak link to libtorch at runtime. However, they should be fine to deploy to users.
* Adds the --extra-index-url to the pip wheel command, allowing PyTorch to be found.
* Hack setup.py to remove the _mlir_libs dir before building. This keeps back-to-back versions from accumulating in the wheels for subsequent versions. IREE has a more principled way of doing this, but what I have here should work.
Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
This makes it much easier to convert models and hides all the
ClassAnnotator complexity.
This also adds a new example `torchscript_resnet18_all_output_types.py`
which shows the ResNet18 IR for all output types.
Also,
- This moves `run_pipeline_with_repro_report` to
`torch_mlir.compiler_utils`.
* shape: add shape transfer function for aten.neg
Prior to this patch, the list of shape transfer functions did not
include `aten.neg`, which resulted in errors like below.
```
error: unsupported by backend lowering: tensor with unknown rank or dtype
note: see current operation: %0 = "torch.aten.neg"(%arg0) :
(!torch.vtensor<[256,256],f32>) -> !torch.vtensor<*,f32>
note: this is likely due to a missing shape transfer function in shape_lib_gen.py
```
This patch fixes the problem by adding a shape transfer function to
reflect the point-wise nature of this operation.
* linalg: add translation of aten.neg operation
This patch adds a translation rule to lower `aten.neg` operations on
tensors to an `arith.negf` operation wrapped inside a `linalg.generic`
operation. This patch also adds a rudimentary test.
This commit adds lowering of `aten::max_pool2d_with_indices_backward` op.
This commit also fixes formatting issues in basic.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>