Shapes can be processed as tensors to represent the set of dimensions.
As reshapes take a list of scalars this can result in a single dynamic
dimension blocking the adjacent static dimensions.
This pass attempts to de-couple tensor computations related to shapes
and propagate values to better support lowering scalar tensor
computations.
There is an issue with stablehlo's linalg compilation. Canonicalization
appears to cleanup the issues until we can determine what in
mlir/stablehlo is the source of the issue.
See the related issues here:
[SHARK-Turbine#556](https://github.com/nod-ai/SHARK-Turbine/issues/556)
1. Adds uint8 casting to onnx.Cast op
2. Fixes an issue with onnx.DequantizeLinear when the scale comes with
shape [1].
3. Adds support for unsigned types in an AtenItemOp folder
4. Adds a simpler quantized model for easier debugging
5. Adds a fusion pass to convert [quant -> dequant -> transpose -> mm]
patterns to [transpose -> quant -> mm].
6. Moved some xfails that are still not passing, but for different
reasons than onnx.cast failures.
This was found while tracing backwards graphs: the convolution_backwards
op will return None if the first result is not needed. Confirmed by
defining a custom op with a `Tensor` return signature and having its
meta kernel return None.
Two e2e tests (AdaptiveAveragePool1/2dUnitOutputSizeDynamic) were
failing due to numerics. This was as a result of passing -1 as the
kernel size in the lowering for the corresponding onnx op
GlobalAveragePool.
Reshaping tensors depend on directly matching individual dimensions to
their corresponding dim in the `torch.view` reshape dimensions. This
involves decoupling dynamic dimensions from their static counterparts
and support cleanup / canonicalization.
This commit adds the OnnxToTorch lowering for the Mish, Softplus,
HardSwish, Trilu, ThresholdedRelu op
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
The previous conversions for AtenAdaptiveAvgPool1dOp and
AtenAdaptiveMaxPool2dOp are refactored into a general templated
conversion that works for all of the AtenAdaptive...PoolNdOp's.
New support is added for the following ops:
1. AtenAdaptiveMaxPool1d
2. AtenAdaptiveMaxPool3d
3. AtenAdaptiveAvgPool3d
Support is also provided for passing inputs without batch dimensions.
For example, applying adaptive_avg_pool2d to an input tensor of rank 3.
After [pytorch #118162](https://github.com/pytorch/pytorch/pull/118162)
gets down to torch-mlir, I'll add a test for AdaptiveMaxPool1d with
return_indices (which will pass with that upstream fix).
---------
Co-authored-by: James Newling <james.newling@gmail.com>
This adds support for converting DynamicQuantizeLinear from torch-onnx
to torch.
I could not get an e2e test to pass, since there seems to be some issues
with uint8 casting somewhere lower in the pipeline. For example
compiling with IREE for llvm-cpu, I would get either the correct zero
point (if zp < 128) or the correct zero-point minus 256 (if zp >= 128).
The output tensor seems to always return a tensor of zeros, which also
occurs when running uint8 examples through QuantizeLinear.
Edit: the first problem can be resolved by casting the output back to
uint8 on output, the second problem is resolved with PR #3018
Added support for dynamic shapes in `flattenusingints` op in tosa
dialect. Due to this some Argmax tests pass
This PR fixes this issue https://github.com/llvm/torch-mlir/issues/3004
The following tests pass after this PR
```
1. "ArgmaxIntModule_basic"
2. "ArgmaxIntModule_multiple_maxs"
3. "ArgmaxModule_basic"
```
Reduce mean lowerings did not succesfully lower to `linalg` via torched.
There were two separate paths that could be consolidated to a single
simpler pass. This resulted in a significant improvement in test
coverage.
If the broadcast shape is length-1 at a dim while `?` in the input dim
then we need to broadcast to the dynamic dim. This is equivalent to
taking a max of two dimensions.
This folds small version of the tensor-scalar comparison operators as
they are commonly used for shape computations. This includes le, lt, ge,
gt, eq, and ne.
The current padding operation was not functional for dynamic shapes.
Updated and enabled tests so that onnx.pad tests pass.
Work TBD for reflection padding.
Set PyTorch and TorchVision version to nightly release 2024-03-07.
This commit also removes the deprecated constraints API:
342e7929b8
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This mostly copy-pastes the reduce minimum implementation to reduce max
to improve test coverage. We also improve the aten lowering for min/max
dim for unsigned types.
The addition of an e2e test is actually provided in the Shark-Testsuite.
This adds 2 test cases for the gridsampler e2e test.
Also as intended there were some items found which needed correction, so
the Gridsampler op has also a change.
Current implementation depends on using `aten.view` which has issues
inferring tensor collapse/expand operations during the lowering to
`linalg`. Using flatten and unsqueeze better infers what the later
reshape behavior.
Add e2d support for `aten.linalg_norm` by decompose it to
`aten.linalg_vector_norm`.
Lowering to `aten.linalg_matrix_norm` is still unsupported.
To Test:
`python -m e2e_testing.main -v`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Existing lowering via aten.view does not work as well for dynamic shapes
as the lowering to tensor.expand must re-infer dynamic shape matching.
Better to directly lower.