This commit does a couple of things. First, it fixes a bug in the
`linalg.generic` body of the `nll_loss_forward` lowering where the
`ignoreIndex` was being compared with the loop index rather than the
current element of the `target` tensor. This was not being caught by
the tests because they were not testing the case where `ingnoreIndex`
actually corresponds to a value in `target`. This has been fixed.
Second, this commit adds support for the `reduction` argument in
`torch.nll_loss_forward` as well as support for 1-D inputs. In order
to simplify the lowering code, I've refactored the code that creates
the `linalg.generic` ops for elementwise and reduction ops into static
functions, to avoid having boilerplate code for indexing maps, etc
that can be very error prone.
Note: The function `convertScalarToDtype` was moved to before all the
conversion patterns, but nothing in it was modified.
- This commit decomposes the `aten.batch_norm` op into the
`aten.native_batch_norm` op, instead of lowering it to the
`linalg.generic` op.
- It also adds run-time asserts in the `aten.native_batch_norm` lowering
to make sure that the shape of the weight, bias, running_mean, and
running_var must match the num of features.
- Since the `aten.native_batch_norm` op is not supported at TOSA backend,
all the modules that are dependent on the `aten.native_batch_norm` op
will fail and therefore they should be removed from the TOSA `passing`
set.
- It also moves `checkNotNone` to utility.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds the op `PseudoAtenFillScalarOp` that represents
`AtenFill_ScalarOp` without the underscore. The approach is the same
as in commit dd998fa4d4.
Adding this op allows for a simpler and more consistent version of the
`empty` and `empty_like` op e2e tests.
- This commit adds lowering of `aten.le.Scalar` and `aten.ge.Scalar` ops
as a part of `convert-torch-to-linalg` pass.
- It also creates a new test script `elementwise_comparison.py` for all
element-wise comparison ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
- This commit adds lowering of `aten.eq.int` op as a part of
`convert-torch-to-std` pass.
- It also refactors the code for binary comparison ops lowering.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
- This commit adds lowering of `aten.Bool.Tensor` and
`aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
`aten.Float.Tensor` op, it folds to the scalar number.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
- The `self` name is being used as a keyword argument to the
`torch.ops.aten.nll_loss_backward` function call, which produces
name-conflict error with the python keyword `self` which is pointer to
the current object.
- This commit fixes this issue by replacing the keyword argument by
positional argument.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Some of the lowerings use the result type obtained from the op itself
to tell the `linalg::GenericOp` what the type of the result should be
rather than using the type of the result tensor given to the
`linalg::GenericOp`. This becomes a problem when the result type of
the op has static size information and the result tensor used in
`linalg::GenericOp` has dynamic dimensions, for `linalg::GenericOp`
expects the result type to be equal to the type of the output tensor.
This commit replaces the use of the result type from the op itself
with the type of the result tensor passed to `linalg::GenericOp`.
In order to not create too many dynamic/static versions of the same
e2e test, e2e tests have only been added to the ops that currently
fail when used with static sizes.
* [tosa] Support for AtenNe[Tensor|Scalar]Op, AtenLog2Op,
AtenBitwiseAndTensorOp, AtenSquareOp and AtenThresholdOp
* Fix for Issue #532 - Mixed input types for few ops and updated few
tests to use i32 instead of i64
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
This commit fixes an error in the refine types pass of constant
allocation ops. The function used to set the dtype,
`fillInDtypeGivenDtypeAndDataType`, takes two torch types as arguments,
but a torch type and a standard MLIR type were being passed into it.
This commit also fixes the way the dtype was calculated in
`visitAtenToDtypeOp`. This op was also passing a standard MLIR type as
an argument to the `fillInDtypeGivenDtypeAndDataType`
function. Moreover, since the op `aten.to.dtype` has the dtype
argument as not optional, all that is needed is to match
against the int value to extract the dtype.
- This commit adds support for `aten.native_batch_norm` operation.
- The current implementation only supports inference mode of
`aten.native_batch_norm` op.
Signed-Off-By: Gaurav Shukla <gaurav@nod-labs.com>
The lowering of aten::nll_loss_backward op has been added
from torch to linalg dialect. The changes has been made as
a part of -torch-convert-to-linalg pass.
Signed-off-by: Prashant Kumar prashant@nod-labs.com
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
The added e2e maxpool testcase from #545 was not getting a static shape
due to an unfolded prim.If when RefineTypes was called. This was because
of unfolded torch.iaten.__is__ and torch.prim.unchecked_cast operators
with torch.derefine operands.
* [tosa] Support for AtenCeilOp and AtenReciprocalOp
* [tosa] Support for comparator ops, Aten[Gt|Lt|Eq][Tensor|Scalar]Op with scalar constant
* [tosa] Support for Scalar variants of Aten[Mul|Div|Add|Sub] Ops with scalar constants
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
Note that to enable folding of the code coming from an example
like the ConstantPad2dStaticModule e2e test, support for other
operations had to be added/improved:
- aten::neg.int
- aten::eq.float
- aten::eq.str
- prim::Uninitialized
This commit adds lowering of `aten.threshold` op
This commit adds lowering of `aten.threshold_backward` op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This involes the following 2 parts:
- Change refine type to propagate more static shape info.
- Get as much static shape info as possible when creating the result
tensor when converting to linalg.
- This commit adds E2E support for `aten.ones_like` and
`aten.zeros_like` ops.
- Adds support for non-None `dtype` argument of `aten.empty_like` op.
- All the unit test cases related to constant tensor allocation like ops
are moved to a different file named `constant_alloc.py`.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds lowering of `aten.arange.start_step` op.
This commit decomposes `aten.arange` and `aten.arange.start` into
`aten.arange.start_step` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
- It folds `aten.to.dtype` when the input tensor type and result type
are exactly same.
- It folds `aten.view` when the rank of both the input tensor type and
result type is unity.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
We only handle the expanding OR collapsing cases, we do not handle
expanding And collapsing happening at the same time or cases where
it's neither collapsing nor expanding like view of [2,3] for
3x2 tensor.
It's assumed that if a shape list element is got from
`aten.size(tensor, dim)` the corresponding dim is not splitted or
collapsed. This assumption makes it easier to deal with dynamic shapes.
- Added E2E support for `aten.eq.Tensor` and `aten.lt.Tensor` ops. Both
the operands are expected to be of the same type, i.e., type promotion
is not addressed as a part of this commit.
- Added E2E support for `aten.eq.Scalar` and `aten.lt.Scalar` ops.
Tensor operand type to Scalar operand type promotion has not been
handled in this commit.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Add the required lowerings and correct test cases.
These op produce zero-d tensors and it was incorrectly mentioned in
refine types to produce 1d tensor of size 1.
- Templatize `aten.zeros` and `aten.ones` ops lowering.
- Add E2E support for `aten.empty` op.
- Add Integer type support in `aten.mul.Scalar` op lowering.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
`aten.gt.Tensor` op has been added in torch dialect and the
lowering of the op has been done to the linalg dialect.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
This commit adds support for aten.native_layer_norm operation. Here
the previous code for aten.layer_norm is tweaked a little bit to
accomodate both mean and variance values alongwith the layer norm
value. This commit also adds decomposition of aten.layer_norm into
aten.native_layer_norm, which was previously getting lowered directly
to linalg.
Signed-Off-By: Prateek Gupta<prateek@nod-labs.com>
This commit adds lowering of `aten.squeeze.dim` op into
`linalg.TensorCollapseShape` op. Here, the dim(th) dimension of the
input tensor is not supposed to be dynamic.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds lowering of `aten.gt.Scalar` and `aten.where.self` as a
part of element-wise ops lowering.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Support for passing memref of bool types as a function argument
and return is added in ref-backend.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
The op lowering has been added as a part of `torch-lower-to-linalg`
pass. This takes care of ignore_index but the weight and reduction
operand is still to be accounted for.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
Many reduction ops take as an argument an optional output dtype that
can change the type of the input tensor before the reduction is
performed. This commit adds support for the optional dtype flag that
had been previously ignored.
Test:
/tools/torchscript_e2e_test.sh -f 'ReduceSumDtype'
/tools/torchscript_e2e_test.sh -f 'ReduceSumDImIntListDtype'
This commit adds lowering of `aten.Squeeze` op into
`linalg.TensorCollapseShape` op. The size 1 dynamic dimensions are not
handled as a part of this commit.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
The lowering of aten.fill.Scalar has been added.
The changes have been made as a part of -torch-convert-to-linalg pass.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
This commit fixes a type promotion bug when NumToTensor was given a
float as an argument. In particular, the rules for type promotion of a
scalar vary depending on if the scalar is part of a tensor op or
not. NumToTensor falls under the second category, but it was being
treated as part of the first category.
aten.log_softmax_back_data op lowering and required
tests has been added. Some NFC have also been added.
Signed-off-by: Prashant Kumar prashant@nod-labs.com
This commit adds lowering of `aten.mul.Scalar` and also adds
decomposition of `aten.addmm` to `aten.mul.Scalar`, `aten.add.Tensor`
and `aten.mm` ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>