Commit Graph

825 Commits (ae6f5e8251db09b03adc81fb4a9c0f1f4f87a7ae)

Author SHA1 Message Date
jinchen 83cba8c696
[onnx] Support for `onnx.EyeLike` via torch lowering (#2994) 2024-04-15 09:23:26 -07:00
jinchen 859f5d280f
Generalize getting index for onnx compress op (#3150) 2024-04-12 15:18:22 -07:00
Aart Bik 307f49f566
[torch-mlir][sparse] support sparse tensor output (#3152)
Sparse inputs and outputs are now fully supported! They always consist
of their constituents buffers, passed as numpy arrays. Sparse on!
2024-04-12 09:56:32 -07:00
Xinyu Yang 6524838bcb
[Torch] Add general AdaptiveAvgPool2dOp decompose support (#3111)
Previously, it could only handle the situations where outputsize == (1,
1) or outputsize == (input_H, input_W). Now it supports all situations
where input_H % output_H== 0 && input_W % output_W == 0
2024-04-11 17:02:59 +08:00
Aart Bik 184d8c13f4
[torch-mlir][sparse] add ID-net example (#3127)
first sparse-in/sparse-out example, will be used
to make actual sparse output work!
2024-04-09 11:21:30 -07:00
Yuanqiang Liu 8d5e2578b0
[Stablehlo] lowering aten.view to shape.num_elements + stablehlo.comp… (#3125)
…ute_reshape_shape

as that `aten.view` support at most one `-1` in dim list. The original
calculation of `numel` is wrong when there is a `-1` in dim list.
2024-04-09 14:54:57 +08:00
Aart Bik 5797d3aa57
[torch-mlir][sparse] add a COO test for 3-dim (#3119)
This tests COO for more than 2-dim. Note that sparsity should really
propagate into the relu activation and the output, but such cleverness
needs to wait for the pending work in the PyTorch tree.
2024-04-08 16:46:51 -07:00
Xida Ren (Cedar) dd967eb199
[ONNX] Support onnx.LSTM (#2969)
This PR only performs a lit test. In lieu of an e2e test, https://github.com/nod-ai/SHARK-TestSuite/pull/142 makede sure that the lowering works & the numbers check out.

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-04-08 12:23:33 -07:00
Vivek Khandelwal 1d6e4c3d77
[MLIR][TORCH] Add OnnxToTorch lowering for Einsum op (#3117)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-08 22:38:01 +05:30
Vivek Khandelwal af54d27820
[MLIR][TORCH] Fix Onnx.TopK lowering (#3103)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 22:12:48 +05:30
Vivek Khandelwal ce7d4f1660
[MLIR][TORCH] Fix Onnx.ReduceSum lowering for failing e2e tests (#3095)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 09:57:19 +05:30
Stella Laurenzo ffaaf08c31
[fx] Fix type inference for scalar/int types. (#3099)
This was discovered in a downstream test suite and was due to a control
flow nesting merge issue. In-tree test added and fixed.
2024-04-02 13:56:43 -07:00
Vivek Khandelwal d1f770c620
[MLIR][TORCH] Fix OnnxToLinalg lowering issue for ReduceMean op (#3008)
This commit also cleans up the OnnxToTorch lowering for the ReduceMean
op and adds the support for handling edge cases.

Signed-Off By: Vivek Khandelwal vivekkhandelwal1424@gmail.com
2024-04-02 16:54:04 +05:30
Thomas Dietert d2432bbe5a
[MLIR][Torch] Do not convert bias tensor to element type if NoneType (#3072)
The `convertTensorToElementType` function expects it's argument to have
a valid tensor type that is not `Torch::NoneType`. This PR checks that
the bias tensor is not of type `Torch::NoneType` before calling
`convertTensorToElementType` on the bias tensor argument in the
`matchAndRewrite` member function of the `ConvertAtenConvolutionOp`
class.
2024-04-02 14:19:26 +05:30
Rob Suderman ec4cb8be44
Bump LLVM to llvm/llvm-project@0030fc4ac7 (#3079)
Co-authored-by: Peiming Liu <peiming@google.com>
2024-04-01 16:34:59 -07:00
Thomas Dietert 3c33dbd987
[MLIR][Torch] Canonicalize torch.from_i1 and torch.to_i1 (#3067)
When lowering `torch.aten.convolution`, it is expected that the
'transposed' argument is a torch.constant operation. In some cases, the
argument was a `from_i1` operation converting an `arith.constant`
operation into a torch.bool. This is not wrong semantically, but instead
of generalizing the legality of the `torch.aten.convolution` op, we
canonicalize `arith.constant` ops followed by `from_i1` ops to
`torch.bool` ops.

For example:
```
//===-------------------------------------------===//
Legalizing operation : 'torch.aten.convolution'(0x124705b90) {
  %33 = "torch.aten.convolution"(%arg0, %20, %21, %31, %29, %30, %19, %32, %0) : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int) -> !torch.vtensor<[1,10,24,24],f32>

  * Fold {
  } -> FAILURE : unable to fold

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : unimplemented: only constant transposed supported.      <-- Resolved by this PR
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported Scalar to Tensor like op
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported elementwise op
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported reduce op
  } -> FAILURE : pattern failed to match
} -> FAILURE : no matched legalization pattern
//===-------------------------------------------===//
<stdin>:21:11: error: failed to legalize operation 'torch.aten.convolution' that was explicitly marked illegal
    %17 = torch.operator "onnx.Conv"(%arg0, %0, %1) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 1 : si64, torch.onnx.kernel_shape = [5 : si64, 5 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [1 : si64, 1 : si64]} : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>) -> !torch.vtensor<[1,10,24,24],f32> 
          ^
<stdin>:21:11: note: see current operation: %33 = "torch.aten.convolution"(%arg0, %20, %21, %31, %29, %30, %19, %32, %0) : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int) -> !torch.vtensor<[1,10,24,24],f32>
```

Additionally, we require the canonicalization of `to_i1` operating on a
torch.constant bool to an `arith.constant ... : i1` for the e2e tests to
pass successfully.
2024-04-01 14:25:51 -07:00
Stella Laurenzo 826786bdd0
[fx] Support ExportedProgram buffer mutation. (#3080)
In the prior state when I supported mutation of user inputs by treating
them as mutable-tensor SSA values, I had left the case of buffer
mutation only vaguely implemented until a concrete use emerged.
    
This patch reworks this buffer mutation support by assuming that buffers
must be resolved via the hooks symbolically and treated with load/store
semantics. This is implied in the structure since we have no SSA value
that represents a buffer and we already assume that reading parameters
happens via such a mechanism.
2024-04-01 14:18:12 -07:00
Xinan Jiang(姜曦楠) 1cdae6bc68
[MLIR][TORCH]Add support lowing aten.Int.bool to arith (#3083)
Now there no lowing for `aten.Int.bool` in `convert-torch-to-arith`
pass. this PR add this support.

Below is the UT.
```
func.func @torch.aten.Int.bool(%arg0: !torch.bool) -> !torch.int {
  %0 = torch.aten.Int.bool %arg0 : !torch.bool -> !torch.int
  return %0 : !torch.int
}
```
2024-04-01 10:05:08 -07:00
Stella Laurenzo 282e9b0e64
[fx] Fix type determination for multi-return ops and static `None` returns. (#3081)
In practice, this was caught by the way that AOT autograd traces
`convolution_backward`. For the unit test, we just repro it with a
custom op.
2024-04-01 09:39:38 -07:00
Gaurav Shukla 129a79417a
[MLIR][ONNX] Fix onnx.gather_nd implementation (#3070)
The indices should be expanded before the torch.gather operation.

Signed-off-by: Gaurav Shukla <gaurav@amd.com>
2024-04-01 20:17:09 +05:30
Xida Ren (Cedar) 5f325749f9
add lowerings for AtenLtIntOp and AtenLeIntOp (#3061)
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-03-27 10:06:43 -07:00
Yuanqiang Liu 0a581a97a7
[Torch Dialect] enhance aten.int.tensor's canonicalize (#3058)
support fold with literal vtensor.  
change it to canonicalize because this pattern will create new op.
2024-03-27 09:51:58 +08:00
Stella Laurenzo e2343cf4ce
[fx] Implement auto_functionalized higher order op. (#3063)
* Also adds the basic scaffolding for handling more of these, which will
be needed for cond, while, etc.
* Refactors some of the support in the generic OpOverload emitter so it
can be shared with these other special forms.

This has been on my list for a while, but it just so happens that as
part of upgrading to PyTorch 2.3 and a pure upstream flow in Turbine, we
were using a feature that required integration with auto_functionalized.
This is perhaps the "weirdest" of the higher-order ops and a poor place
to start, but needs must. We have testing for this in Turbine.

Full support in Turbine has an entire custom ops facility. I've reduced
this down to a unit test in torch-mlir.
2024-03-26 17:06:05 -07:00
Rob Suderman 14b548f968
[torch] Improve shape inference for `torch-to-linalg` path for reshapes (#3055)
Reshaping tensors depend on directly matching individual dimensions to
their corresponding dim in the `torch.view` reshape dimensions. This
involves decoupling dynamic dimensions from their static counterparts
and support cleanup / canonicalization.
2024-03-26 12:41:40 -07:00
Vivek Khandelwal 9ae33e482e
[MLIR][TORCH] Add OnnxToTorch lowering for ops (#3049)
This commit adds the OnnxToTorch lowering for the Mish, Softplus,
HardSwish, Trilu, ThresholdedRelu op

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-03-25 20:29:07 +05:30
zjgarvey 6aa481c204
[ONNX] LogSoftmax to Torch (#3024)
This PR adds support for onnx.LogSoftmax both for old versions (<13,
with axis >=0), and new versions (13).
2024-03-22 11:01:39 -07:00
Gaurav Shukla 50635dd509
[ONNX][MLIR] Add support for onnx.gather_nd (#2988)
Signed-off-by: Gaurav Shukla <gaurav@amd.com>
2024-03-22 21:38:39 +05:30
Stella Laurenzo 6ea857c644
[fx] Make the lift_fresh_copy -> clone special form use kwargs. (#3045)
At some point, this op became kwarg-only instead of arg/kwarg.
Discovered when upgrading to PyTorch 2.3.

Also adds a test as this was untested in-tree (was caught out of tree).
2024-03-21 15:34:40 -07:00
penguin_wwy 7616d637fd
Add stateless fx graph import (#3036) 2024-03-21 14:44:54 -07:00
Xida Ren (Cedar) cb5cb506df
Fix SCF Forloop fails to convert to linalg when a tensor argument is supplied to the loop block (#3040)
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-03-20 11:04:02 -07:00
zjgarvey 6ff71b40c8
[ONNX] onnx.DynamicQuantizeLinear to Torch (#3009)
This adds support for converting DynamicQuantizeLinear from torch-onnx
to torch.

I could not get an e2e test to pass, since there seems to be some issues
with uint8 casting somewhere lower in the pipeline. For example
compiling with IREE for llvm-cpu, I would get either the correct zero
point (if zp < 128) or the correct zero-point minus 256 (if zp >= 128).
The output tensor seems to always return a tensor of zeros, which also
occurs when running uint8 examples through QuantizeLinear.

Edit: the first problem can be resolved by casting the output back to
uint8 on output, the second problem is resolved with PR #3018
2024-03-20 10:58:25 -07:00
jinchen 9cf6c45a39
Add OnnxToTorch support for Compress op (#3025) 2024-03-20 17:12:08 +00:00
Pavani Chowdary c51e2130f2
[onnx] support for lowering mod op from onnx to torch (#2859)
nod-ai/Shark-Turbine#267

---------

Authored-by: boddu.pavani@research.iiit.ac.in
Co-authored-by: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-03-18 17:54:37 +05:30
penguin_wwy f34c187ac4
Normalize type hints to be compatible with multiple Python versions (#3028)
Although we provide a wheel package for Python 3.8, it may actually
throw the following exception:
`TypeError: 'type' object is not subscriptable`
2024-03-15 08:29:48 -07:00
Sambhav Jain 0b2f9c89a2
Bring back `dynamic_shapes` constraints in fx importer API (#3026)
https://github.com/llvm/torch-mlir/pull/2992 dropped `constraints` from
the fx importer API,
[breaking](https://github.com/cruise-automation/mlir-tcp/actions/runs/8284385380/job/22669774071)
downstream AOT compile tests in `mlir-tcp` that use it. This knob has
been soft-deprecated for a while now, replaced by `dynamic_shapes` - a
more ergonomic interface. This PR brings back dynamic_shapes constraints
in the new supported form. Also added a python lit test with dynamic
shaped annotations.
2024-03-14 10:26:34 -07:00
aldesilv 6fa21bd8b1
OnnxToTorch lower celu op (#2920) 2024-03-13 20:34:10 +05:30
Rob Suderman 8fb28661f9
[onnx] Fix onnx.ReduceMean lowering (#3002)
Reduce mean lowerings did not succesfully lower to `linalg` via torched.
There were two separate paths that could be consolidated to a single
simpler pass. This resulted in a significant improvement in test
coverage.
2024-03-11 11:32:53 -07:00
Rob Suderman bd7f1baa42
[onnx] Fix expand operation for dynamic shape max (#3001)
If the broadcast shape is length-1 at a dim while `?` in the input dim
then we need to broadcast to the dynamic dim. This is equivalent to
taking a max of two dimensions.
2024-03-08 16:23:07 -08:00
Rob Suderman 0723584936
[torch] Add folder for torch.aten.*.Scalar comparisons (#3000)
This folds small version of the tensor-scalar comparison operators as
they are commonly used for shape computations. This includes le, lt, ge,
gt, eq, and ne.
2024-03-08 13:44:00 -08:00
Andreas Falkenberg 551a4e45f3
[onnx] Add support for `onnx.Gemm` with no bias (#2993)
Previous gemm version required a bias vector. 
This provides an alternate path to `Torch::AtenMm`
with no bias operation.
2024-03-07 15:58:38 -08:00
Rob Suderman 1964208d19
[onnx] Fix constant pad for dynamic shape (#2989)
The current padding operation was not functional for dynamic shapes.
Updated and enabled tests so that onnx.pad tests pass.

Work TBD for reflection padding.
2024-03-07 13:29:50 -08:00
Scott Todd 7b18646def
[onnx] Handle optional arguments in Clip op pattern. (#2976)
Spec: https://onnx.ai/onnx/operators/onnx__Clip.html
2024-03-07 17:25:14 +00:00
Vivek Khandelwal 6e84752c39
build: manually update PyTorch version (#2992)
Set PyTorch and TorchVision version to nightly release 2024-03-07.
This commit also removes the deprecated constraints API:
342e7929b8

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-03-07 21:42:38 +05:30
Rob Suderman c15f1a2bd2
[onnx] Adding lowering for `onnx.Size` operation (#2985)
We can support `onnx.Size` by requesing the size of each dimensions and
taking the product of the results, then packing it into a tensor.

---------

Co-authored-by: Scott Todd <scott.todd0@gmail.com>
2024-03-06 17:01:05 -08:00
Rob Suderman a78659742a
[onnx] Migrate `onnx.ReduceMax` to match `onnx.ReduceMin` (#2981)
This mostly copy-pastes the reduce minimum implementation to reduce max
to improve test coverage. We also improve the aten lowering for min/max
dim for unsigned types.
2024-03-06 16:48:21 -08:00
Andreas Falkenberg ea76dd12ba
[onnx][torch] Gridsampler E2E test and corrections of gridsampler (#2987)
The addition of an e2e test is actually provided in the Shark-Testsuite.
This adds 2 test cases for the gridsampler e2e test. 
Also as intended there were some items found which needed correction, so
the Gridsampler op has also a change.
2024-03-06 10:56:58 -08:00
Rob Suderman 933db87a07
[onnx] Add support for constants of `i1`s (#2978)
`getRawBuffer` expects a densely packed vector of `i1` values however
`onnx` does not densely pack the values. Include code to handle the
packing / unpacking.
2024-03-05 13:55:13 -08:00
Rob Suderman a86e89ecb5
[torch] Additional folders for shape computations (#2972)
A handful of operations are commonly used in shape calculations (slice,
concat, broadcast). Added these additional folders to better propagate
simple shape computations.
2024-03-04 11:46:49 -08:00
Chi_Liu 09875fabd1
[MLIR][ONNX] Add ONNX ReduceProd support (#2943)
Alternatives to https://github.com/llvm/torch-mlir/pull/2908

Fix https://github.com/nod-ai/SHARK-Turbine/issues/353
2024-03-04 11:07:03 -08:00
Rob Suderman d51e80b648
[onnx] Fix onnx.gather lowering for rank-0 indices (#2973)
We assumed rank was atleast 1 however it can be rank-0, generating an
illegal pair of flatten / unflatten operations. Corrected this.
2024-03-04 08:25:19 -08:00
Rob Suderman 61f0a5facf
[torch] Add an `aten.cat` length-0 canonicalization (#2966)
If an input is length-0 along the dimension of canonicalization we can
remove the tensor from the list
2024-03-01 21:41:12 -08:00
Vivek Khandelwal 579ac8b666
[MLIR][TORCH] Fix OnnxToLinalg lowering issue for sub and sum op (#2954)
This commit adds the support for scalar conversion to byte. 
This commit also fixes the OnnxToLinalg lowering issue for Onnx.Sub and
Onnx.Sum op.
Fixes https://github.com/nod-ai/SHARK-Turbine/issues/466 
Fixes https://github.com/nod-ai/SHARK-Turbine/issues/467

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-02-29 21:48:46 +05:30
Aart Bik f21b76b68a
[torch-mlir][sparse] fixed merge conflict (#2967) 2024-02-28 17:14:00 -08:00
Peiming Liu e85a2a87c5
[torch-mlir][sparse] support e2e sparse kernels with COO inputs. (#2939) 2024-02-28 16:08:37 -08:00
Andreas Falkenberg 5437f32193
[onnx][torch] Lower `onnx.grid_sampler` to the `torch` equivalents (#2952)
This is the lowering of gridsampler from onnx to torch using our prior
implementation of AtenGridSamplerOp.
Here are several checks for cornercases implemented. We may decide to
have part of these checks in AtenGridSamplerOp instead of the onnx
lowering portion.
2024-02-28 13:52:15 -08:00
Rob Suderman e48fe45886
[onnx] Import `onnx` import to pass remaining tests (#2951)
Finish supporting importing the vast majority of `onnx` operations. This
includes:
- region support
- region value inherentance
- `torch.string` support
- `torch.list` support
- `torch.optional` support
2024-02-28 12:18:02 -08:00
Rob Suderman 6f3d62ab04
[torch] Fix folders and `cat` and `view` torch lowerings (#2963)
A bunch of small fixes are interlinked and trigger crashes if not
addressed as a group. This includes:

- aten view when expand from a rank-0 tensor
- slice folder with negative indices
- `aten._shape_as_tensor` folder on a rank-0 tensor
- `aten.cat` of a tensor with a length-0 tensor
2024-02-28 12:04:52 -08:00
Rob Suderman 4a7a7d76f8
[onnx] Fix ReduceMean lowering to torch (#2956)
Torch lowering only supported the most recent version. Refactored the
lowering so more easily handle default values and optional operands /
attributes.
2024-02-27 22:48:07 -08:00
Aart Bik 30212547a9
[torch-mlir][sparse] add JIT test for block sparse SpMV (#2955)
This required adding a "decompose" pass to the torch lowering, since
torch.mv was not directly handled by lowering to linalg
2024-02-27 11:49:32 -08:00
Rob Suderman e30a083aff
[torch] Rework lowering to tm_tensor.scatter to stop serialization (#2940)
We collapsed and broadcasted scatter indices to a single element
version. We should instead upport `tm_tensor.scatter`s support for
multiple indices and the implicitly broadcasted behavior. This avoids
the serialization and materializing a needlessly large indices tensor.
2024-02-27 11:46:57 -08:00
Vivek Khandelwal d81747eadb
[MLIR][TORCH] Extend support for OnnxToLinalg lowering for Dropout and Div op (#2938)
Fixes https://github.com/nod-ai/SHARK-Turbine/issues/451,
https://github.com/nod-ai/SHARK-Turbine/issues/452
2024-02-27 11:02:05 +05:30
Sambhav Jain 3cbe6c98ec
Expose `func_name` to the main fx import API (#2949)
As titled.
2024-02-26 10:08:14 -08:00
Aart Bik 4147b280ce
[torch-mlir][sparse] add block sparsity to mlir lowering (#2942)
Also note that we are in the process of proposing SparseTensorMetadata
to PyTorch FX graph export (see
https://github.com/pytorch/pytorch/pull/117907). This will hopefully
eventually replace the current data structures in torch-mlir.
2024-02-23 11:57:20 -08:00
Andreas Falkenberg 55dc8deb92
[torch] GridSample TorchToLinalg lowering (#2883)
Lowers `torch.grid_sample` to the equilvalent `linalg` representation.
2024-02-23 09:14:38 -08:00
Rob Suderman 53f6d06ab8
[onnx] Drop `ConstantOfShape` logic form importer, fix torch lowering (#2930)
There is no reason to treat `ConstantOfShape` as a specialized import
any as there exists a onnx-to-torch equivalent. Dropping the import
coding and adding support for resource conversion substantially
increases test coverage for dynamically shaped tests.
2024-02-21 21:34:43 -08:00
Srinath Avadhanula 0f80e75c2e
allow tosa.cast to convert from f32 to f16 (#2934)
According to the [official TOSA
spec](https://www.mlplatform.org/tosa/tosa_spec.html#_cast), `tosa.cast`
allows a cast from `fp32` to `fp16`. We were not previously accounting
for this in the `TorchToTosa` lowering.

Also did a tiny bit of cleanup in the code to make it easier to spot
which conversions are currently allowed.

---------

Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
2024-02-20 14:22:38 -08:00
Rob Suderman 13553d49c9
[onnx] Update the importer to create a `none` for missing operands (#2931)
Some operands are optional so we require a placeholder for missing
operands. We invent an `onnx.None` operation as our placeholder.
2024-02-20 09:30:30 -08:00
Stella Laurenzo 4446fa00d8
Migrate passes in TorchConversion to use FunctionOpInterface. (#2935)
This enables better re-use in downstreams which use different func
implementations and should have no impact on those that don't except in
opt pipelines if using the old form. With interfaces, explicit pipelines
via `--pass-pipeline=` must be used.
2024-02-20 08:54:02 -08:00
Rob Suderman 135c81a416
[torch] Add folder for `prim.NumToTensor.Scalar` (#2921)
Useful for `slice` lowerings that depend on tensors made form scalars.
2024-02-19 11:55:54 -08:00
Rob Suderman e80054a3cc
[torch] Folders for `torch.aten.*.tensor` operators [add, sub, mul] (#2878)
Simple folder for limited size aten tensor operations. This is primarily
useful for shape computation folding as they unfortunately can use
`aten` operators. Add, sub, mul are common examples of these folders.
2024-02-19 10:28:23 -08:00
Rob Suderman cea51897a5
[onnx] Simplify onnx.slice lowering (#2919)
Onnx slice lowering used arange needlessly instead of directly
constructing the constant dimension values. This makes lowerings to
linalg struggle as multiple folders are required to get what is a
constant index value.
2024-02-19 10:26:29 -08:00
aldesilv d29157b33f
OnnxToTorch support for onnx.InstanceNormalization op (#2710)
https://github.com/nod-ai/SHARK-Turbine/issues/327
2024-02-19 19:53:48 +05:30
Rob Suderman 7a0d0e954b
[onnx] Fix onnx.gather lowering to use torch.aten.index_select (#2913)
Onnx's gather maps directly to `torch.aten.index_select`. We should just
use that path.
2024-02-16 16:05:44 -05:00
Aart Bik c5d8c12469
[torch-mlir][sparse][NFC] fixed typo (#2917)
grammar police
2024-02-16 13:02:00 -08:00
Stella Laurenzo 5253282c55
[fx] Support mutation in ExportedProgram. (#2916)
As of https://github.com/pytorch/pytorch/pull/118969, `ExportedProgram`
has the long awaited fixes to correctly categorize various things
relating to parameters, buffers, mutated inputs and constants.

With this additional modeling, we are finally able to implement
(safely/soundly) the mutable semantics that were attempted on the
TorchScript path. The difference is that on that path, we had to
conservatively treat everything as mutable and run some dodgy heuristics
(which have been the cause of many bugs relating to
"MaximizeValueSemantics") to try to get back to an immutable state.

The new model supports mutability at the graph edges, allowing both user
inputs and buffers to be mutated (there is some more support than that,
but that is all I fully tracked through to implementation).

Therefore, when we receive programs like this, we now can selectively
enable mutation at the edges. This happens to be the mutability model
that IREE supports, which I expect to be a primary beneficiary. However,
there is nothing stopping anyone else from handling the `!torch.tensor`
types and the existing copy/overwrite ops that will be selectively
added.

Since this relies on API changes that will not release until 2.3, I'm
being a bit cautious about not refactoring existing facilities.
2024-02-16 09:46:30 -08:00
Rob Suderman 074f112d6a
[onnx] Add testing using the `onnx` compilation using torch tests (#2795)
We can route the torch tests via `onnx` using the `torch.onnx.export`
tooling. We can then reimport, lower to torch, and compile to linalg to
validate the onnx path is working correctly.

The current implementation exposes some failures in the `onnx` path so
we cannot enable the onnx test suite yet due to segmentation faults.
2024-02-15 10:17:13 -08:00
Vivek Khandelwal d6d1a173dc
[MLIR][Torch] Add OnnxToTorch and TorchToLinalg support for trig ops (#2903)
This commit adds the OnnxToTorch lowering for cosh, acosh, asin, asinh,
and atanh op.
This commit also adds the TorchToLinalg lowering for acosh, asin, asinh,
and atanh op.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-02-14 11:58:09 +05:30
Rob Suderman e9cdd6cbc5
[torch] Fix tm_tensor.attention for end-to-end (#2907)
Some operations include a backend matcher for specialized operations. We
map these back to generics so they appropriately match to the high
performance versions. This is done for the attention operation.
2024-02-13 21:18:01 -08:00
Scott Todd d6e1d836ca
Drop torch attributes at the end of backend conversion. (#2876)
Fixes https://github.com/llvm/torch-mlir/issues/2866

Some backends / downstream projects expect that a "fully converted"
program has no remaining ops or attributes from the original dialect(s).
2024-02-13 14:32:02 -08:00
Aart Bik 24c2fc0b5f
[torch-mlir][sparse] add JIT test to expose pending issues (#2906)
This test exposes issues that need fixing
(1) propagate sparsity into the FX graph (over elt-wise) (2) batched
dimensions need a new "dense(batch)" format
2024-02-13 13:42:56 -08:00
saienduri 9b967f6b5a
[MLIR][ONNX] Add OnnxToTorch support for Mean, IsInf, IsNaN, PRelu op (#2801)
This commit adds the OnnxToTorch support for Mean, IsInf, IsNaN, and
PRelu ops. All high priority ops were taken so went with these. The non
trivial ones are Mean and IsInf which might require extra review

---------

Co-authored-by: MaheshRavishankar <mravisha@amd.com>
2024-02-13 12:38:21 +05:30
Aart Bik b6f4ca512e
[torch-mlir][sparse] sparsity metadata refinement (#2901)
Various improvements on sparsity metadata:

(1) define single data structure for all sparsity related metadata 
(2) handle batched dense dimensions, as well as dense subtensor
dimensions
(3) refine sparsity propagation for deeper networks
2024-02-12 16:10:57 -08:00
Aart Bik be8375d350
[torch-mlir][sparse] implement first sparse_jit end-to-end path (#2894)
This PR introduces a sparse_jit wrapper that can run simple models with
sparse tensor inputs end-to-end. The implementation shows all required
components on modifying sparse tensor types with a 1:N relation on the
call sites. Two tests shows that the JIT runs end-to-end while computing
the correct results.

More details to follow (generalizing to COO and different ranks, as well
as support for *output* sparse tensors), but the general concepts are
all here now.

**_Update: Thanks to Rob, bump to proper LLVM/MLIR hash is done!_**

_**NOTE that all parameter passing changes are nicely done "downstream"
in MLIR, so very little changes are required in torch-mlir code
proper**_

---------

Co-authored-by: Franz Haniel <77495327+frafranz@users.noreply.github.com>
Co-authored-by: Franz Haniel <franz.haniel@amd.com>
2024-02-12 10:04:54 -08:00
Rob Suderman c0f139be0f
[torch] Add `torch.aten.eq.Tensor` comparison folder (#2889)
Added a folded for a equals operator. This allows an equivalent
comparison folder, primarily for when shape computations occur small
size tensor.
2024-02-09 15:02:20 -08:00
Rob Suderman 7d33ba69ac
[torch] Folder for torch.aten.select.int for splat cases (#2890)
If the input or result is a splat value we can just constant fold the
result. This is common for shape computations and can help with shape
inference.
2024-02-09 14:02:54 -08:00
Ashay Rane 21f070e95f
onnx: fix checks in TorchOnnxToTorch pass to match the ONNX spec (#2848)
This PR contains three commits to update the validation checks in the
ONNX -> Torch conversion pass for the AveragePool, Pad, and Slice operators:

> onnx: fix preconditions for lowering AveragePool ops
> 
> The `pads` attribute of the AveragePool operator specifies the value to
> pad at both the beginning as well as the end of the axis (see
> https://onnx.ai/onnx/operators/onnx__AveragePool.html#attributes), so
> the size of this attribute should be twice the rank of the input tensor.
> However, our TorchOnnxToTorch bails out early since it incorrectly
> compares the pads attribute with the rank (not twice the rank) of the
> input tensor.
> 
> This patch fixes the code to match the spec and adds a lit test.

> onnx: allow optional constant value for Pad operator
> 
> The `constant_value` input of the onnx.Pad operator is optional (see
> https://onnx.ai/onnx/operators/onnx__Pad.html#inputs), but the
existing
> logic for lowering the operator into the Torch dialect assumes that it
> is mandatory.
> 
> This patch makes the attribute optional and constructs a default value
> (a list of zeros the size of the input tensor) if the attribute was not
> specified.

> onnx: fix checks for axes and steps inputs of Slice operator
> 
> The ONNX Spec for the Slice operator allows the `starts` and `ends`
> inputs to have fewer indices that the dimensions of the `data` tensor
> (see https://onnx.ai/onnx/operators/onnx__Slice.html), but our code
> expects these inputs to be as many as the `data` tensor's dimensions.
> 
> More precisely, the spec requires that the `starts` and `ends` inputs
> are only as long as the `axes` input, but since the `axes` input is
> optional, the default type for the `axes` input has to match the type
> for the `starts` and `ends` inputs. Moreover, the number of indices in
> the `steps` input also has to match those in the `axes` inputs (instad
> of matching the dimensions of the `data` input).
> 
> This patch fixes the checks in the TorchOnnxToTorch conversion so that
> they match the ONNX spec.
2024-02-07 21:19:27 -08:00
Vivek Khandelwal 4df96616db
[MLIR][TORCH] Modify Onnx.Reshape lowering for static shape cases (#2852)
This commit modifies the OnnxToTorch lowering of Onnx.Reshape op by
creating the result shape list for the aten.reshape using the result
shape values inferred from the op's result shape.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-02-07 17:44:07 -08:00
Dave Liddell 23647ab2d1
[torhc] aten.index_select folder (#2871)
Folds aten::index_select ops under the following conditions:

1. If the input and output are the same shape, the indexing operation is
a NOP, so just return the input.
2. If the input has shape <1x1x...xNx...x1> (all 1's except for one
dim), and the output shape is <1x1x...x1> (all 1's), then there is a
single index, so extract the single element value and return a tensor
with that value.

---------

Co-authored-by: Dave Liddell <dliddell@xilinx.com>
2024-02-07 16:17:15 -08:00
Xida Ren (Cedar) fc04bc7ee9
[torch] AtenSliceOp folder that produces splat results (#2869)
Includes `slice` folder and lit tests

---------

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-02-07 19:00:46 +00:00
saienduri bfcf93ea21
Rename torch_mlir.compile APIs and introduce FX based analogs (#2842)
Link to related RFC:
https://discourse.llvm.org/t/rfc-rename-torch-mlir-compile-apis-and-introduce-fx-based-analogs/76646
This commit updates the documentation, tests, CMake files, and API for
the proposed changes in the RFC. There is a new torch_mlir/fx.py for
user level APIs related to importing modules and a corresponding test
for this path can be found at test/python/fx_importer/basic_test.py.

---------

Co-authored-by: MaheshRavishankar <mravisha@amd.com>
2024-02-06 19:07:59 -08:00
Xida Ren (Cedar) cc06391630
AtenSortOp Folder (#2864)
A chunk off

https://github.com/llvm/torch-mlir/pull/2856
https://github.com/llvm/torch-mlir/pull/2860

---------

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
2024-02-06 21:12:12 +00:00
Daniel Garvey faf7d4aaa5
[fx_importer] Add support for 0D tensors (#2870)
Adds an escape hatch from creating a DenseResourceElementsAttr for
single value tensors into DenseElementsAttr.

For 0d or 1element, splats are better as DenseElementsAttr. Don't use
DenseResourceElementsAttr for it
2024-02-06 00:19:31 -06:00
Dave Liddell 1cb14f6879
Rob's atenTensor folder (#2867)
If a tensor is initialized by a list with a single constant integer,
this folder turns it into a torch.vtensor.literal

---------

Co-authored-by: Dave Liddell <dliddell@xilinx.com>
2024-02-05 17:10:42 -08:00
Rob Suderman e3faef5224
[onnx] Convert `onnx.QLinearConv` to `torch` (#2851)
Leaning on the QDQ functionality in torch we can support the QLinearConv
operation by piggybacking through `torch.Convolution`. This includes
some changes such as allowing the `onnx` rewriter to run recursively.
Doing so allows `QLinearConv` to decopmose to `onnx.Convolution` which
is then lowered to `torch`.
2024-02-05 16:09:41 -08:00
Rob Suderman cb52c4b3cc
[onnx] Fix `onnx-to-torch` lowering for flatten shape (#2834)
The existing `flatten` lowering did not define what the intermediate
shape was. This could result in failures to lower further to linalg as
the intermediate shape was unknown. Added a shape refinement section.
2024-02-05 14:23:46 -08:00
Gaurav Shukla f4562a8eaa
[ONNX] Fix the lowering of onnx.expand op (#2861)
Signed-off-by: Gaurav Shukla <gauravshukla789@gmail.com>
2024-02-05 23:46:58 +05:30
Xida Ren (Cedar) 24b8c8672a
[torch] Add folders for `torch.fill`, `torch.ones`, `torch.zeros` and `aten.getItem` (#2849)
So that the CumSum Op in OPT can get the constant that it requires to be lowered to TMTensor

---------

Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-02-02 10:46:33 -08:00
Rob Suderman 29baa813bd
[onnx] Fix `pool` lowering for non-symmetric padding (#2837)
`torch` requires that padding be symmetric for pooling operations. To
support non-symmetric pad we need to separately materialize out the
padding operation.

---------

Co-authored-by: James Newling <james.newling@gmail.com>
2024-02-01 14:35:21 -08:00
Dave Liddell 04be6ba773
Make the onnx importer more robust for internal/external and large models (#2794)
Fix for https://github.com/llvm/torch-mlir/issues/2765

The onnx docs say that you can't do shape inference using the in-memory
API for models > 2 GB. This fix replaces that API with the file-based
API. Since the new API generates an intermediate file, also added a
--keep switch to keep that file, which I delete by default.

---------

Co-authored-by: Dave Liddell <dliddell@xilinx.com>
2024-01-31 21:58:43 -08:00
Sambhav Jain 8a17c98b74
Bump stablehlo to openxla/stablehlo@fd52182f76 (#2821)
With the recent LLVM integrate and changes from
https://github.com/llvm/llvm-project/pull/78260, we hit this build error
in Stablehlo (which is quite old).
```
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1020:14: error: no member named 'startRootUpdate' in 'mlir::PatternRewriter'
    rewriter.startRootUpdate(op);
    ~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1026:16: error: no member named 'finalizeRootUpdate' in 'mlir::PatternRewriter'
      rewriter.finalizeRootUpdate(op);
      ~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1029:16: error: no member named 'cancelRootUpdate' in 'mlir::PatternRewriter'
      rewriter.cancelRootUpdate(op);
      ~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1108:14: error: no member named 'updateRootInPlace' in 'mlir::PatternRewriter'
    rewriter.updateRootInPlace(op->getParentOp(), [&]() { return; });
    ~~~~~~~~ ^
4 errors generated.
Target @torch-mlir//:torch-mlir-opt failed to build
```

I'm still puzzled as to how this didn't fail with the CMake merge gating
CI (do we not test Stablehlo builds/tests?). In any case, bumping our
submodule to https://github.com/openxla/stablehlo/pull/1918 fixes it.

It exposes a new failing lit test in TorchToStablehlo though, that I
have looped stablehlo developers into
([here](https://discord.com/channels/999073994483433573/999074539138990131/1201235845391331419)).
```
bazel run @torch-mlir//test/Conversion:TorchToStablehlo/scatter.mlir.test 

...external/torch-mlir/test/Conversion/TorchToStablehlo/scatter.mlir
within split at <stdin>:1 offset :33:8: error: unexpected error: Expects non-empty reduction block for type inference                                                                               
  %0 = torch.aten.scatter.src %arg0, %int0, %arg1, %arg2 : !torch.vtensor<[?,?],si64>, !torch.int, !torch.vtensor<[?,?],si64>, !torch.vtensor<[?,?],si64> -> !torch.vtensor<[?,?],si64>             
       ^                                                                                                                                                                                            
LLVM ERROR: Failed to infer result type(s).               
```

Bazel CI:
https://github.com/sjain-stanford/torch-mlir/actions/runs/7732673480/job/21083102228
2024-01-31 14:21:17 -08:00
Rob Suderman 3500523f75
[onnx] Convert resources to denseattr for `onnx.constant` to `torch` (#2830)
`onnx` explicitly specifies that `raw_data` is stored in `little-endian`
layout. While converting
to `torch` we need to convert from a known endian format to an internal
format of consistent
layout. This means endianness must be correct during the import of
`onnx.Constant`.

---------

Co-authored-by: Xida Ren (Cedar) <cedar.ren@gmail.com>
2024-01-31 11:40:53 -08:00
Stella Laurenzo 943164d797
Fix some spurious `None` values in tests (broken at head). (#2840) 2024-01-30 22:39:22 -08:00
Aart Bik 105aad6f57
[torch-mlir] provide FX traced graph importer for sparse tensors (#2817)
Note that we are waiting for actual FX traced graph support for sparse
tensors. For details see

https://github.com/pytorch/pytorch/issues/117188

Until then, however, we provide this clever importer that builds the FX
traced graph for for the dense case and then puts a sparse annotation
back on the parameters.

With import test.
2024-01-30 21:22:12 -08:00
Yuanqiang Liu d778950f45
[Torch Dialect] add fold pattern for aten.clone (#2804) 2024-01-31 09:43:21 +08:00
Rob Suderman 25a5a22cbd
[torch] Support `torch.convolution` quantized lowering to `linalg` (#2811)
Linalg has quantized specific operations. We can lower to these
operations when there is a known zeropoint and scale operations. This
allows the `convolution` to occur with lower bitwidth's, improving the
overall performance.
2024-01-30 13:46:47 -08:00
Aaron St George 4c557847bd
Don't fold `aten.detach` if result isn't same type as input. (#2824)
We were seeing some assertion failures after some checks around folders
were tightened up in LLVM:
https://github.com/llvm/llvm-project/pull/75887 . This PR essentially
moves the logic that used to be applied at the LLVM level into the
folder, which seems to be the suggested fix.

I'm not sure if the IR that caused issues for us _should_ be valid?
```
%1 = torch.aten.detach %arg0 : !torch.tensor<[1],f32> -> !torch.tensor
```
A better fix might be to create a verifier ensuring the result of
`aten.detach` has the same type as its operand.

---------

Co-authored-by: aaron-stgeorge <aaron.stgeorge@getcruise.com>
2024-01-30 09:45:51 -08:00
aldesilv eff325abc3
OnnxToTorch ReduceMax lowering (#2768)
Fixes https://github.com/nod-ai/SHARK-Turbine/issues/352
2024-01-30 11:44:48 +05:30
Rob Suderman d3fd754b93
[onnx] `onnx.MatMulInteger` lowering to `torch.mm` and `quint*` types (#2761)
Torch does not have an equivalent matmul operation for integers. Instead
it sidechannels the information via its quantized types. For this
lowering we setup these sidechannels then invoke `torch.mm`.
2024-01-29 09:40:21 -08:00
Aart Bik 46a25d7241
[torch-mlir][sparse] preserve sparsity during lowering torch to linalg (#2809)
This preserves sparsity at the most obvious places of lowering TORCH
tensors to MLIR RankedTensorType tensors. Other places are marked for
audit. With some initial lowering tests.
2024-01-26 10:54:59 -08:00
Vivek Khandelwal da7c6d2c16
[MLIR][TORCH] Add support for dynamic shape for Onnx.Transpose op (#2803)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-26 09:46:54 -08:00
Phaneesh Barwaria 4964977e85
[ONNX][MLIR] support constantOfShape op (#2747) 2024-01-26 09:36:39 -08:00
Aart Bik 0aed231e21
[torch-mlir][conversion-test] cleanup trailing whitespace in mlir files (#2807) 2024-01-25 14:24:28 -08:00
Aart Bik fe836ceebf
[torch-mlir][test] cleanup trailing whitespace in mlir files (#2806) 2024-01-25 14:24:13 -08:00
Aart Bik e824fbc65c
[torch-mlir][torch] add encoding field to torch type (#2799)
This adds an encoding field to the torch type, using the interfaces for
printing, parsing, and verification. Note that although this change
prepares adding sparsity to the torch type (as illustrated by the round
trip and invalid tests), nothing in this change depends on the actual
contents of the encoding field!
2024-01-25 10:04:04 -08:00
Rob Suderman f6f890520b
[torch][quant] Quantized `torch.mm` for linalg with end-to-end test (#2750)
This includes custom op matching for decomposed operations and fusing
dequantization into dense operations. As a validation we compare
to the dequant+mm torch implementation.
2024-01-24 14:02:50 -08:00
Rob Suderman 60bf6c25af
[onnx] Lower `onnx.QLinearMatMul` lowering to `torch` operators (#2776)
We can plumb the linear matmul into pytorch using its quantized types
with side channel information. To handle the final int8 operation we
dequantize and requantize.
2024-01-24 12:28:48 -08:00
Vivek Khandelwal 894805dd5e
[MLIR][TORCH] Support for `onnx.LayerNormalization` (#2789)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-24 11:08:20 -08:00
Gaurav Shukla 12f123eff8
[ONNX][MLIR] Add support for pad op in the onnx pipeline (#2738)
This commit adds mapping from `onnx.pad` op to `torch.pad` op. Currently
it does not support `axes` parameter of `onnx.pad` op.

Signed-off-by: Gaurav Shukla <gaurav.shukla@amd.com>
2024-01-25 00:33:37 +05:30
Phaneesh Barwaria ac8975ea12
[MLIR] [ONNX] lowering for onnx tile op and sign op (#2725) 2024-01-24 22:56:21 +05:30
Chi_Liu 77ae56337d
[ONNX][MLIR] Add support for onnx.Exp op (#2792)
https://github.com/nod-ai/SHARK-Turbine/issues/312
2024-01-23 13:45:00 -08:00
James Newling dc056e58e6
[MLIR][TORCH] Add onnx.cast cases used by OPT-1.25M (#2787) 2024-01-23 21:06:25 +05:30
Gaurav Shukla b7a0329676
[ONNX][MLIR] Fix padding size constraint for onnx.maxpool op (#2782)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2024-01-23 19:23:01 +05:30
Chi_Liu cad98e8113
[ONNX][TORCH-MLIR] Add TopK support (#2774)
https://github.com/nod-ai/SHARK-Turbine/issues/331
2024-01-22 12:56:39 -08:00
Srinath Avadhanula 73b30604da
Do not try to legalize transposed convolution (#2721)
Currently transposed convolution is not handled correctly by
`TorchToTosa`. This PR allows transposed convolutions to pass through
the conversion so that they can be handled by other conversion passes
later in a pipeline.

An example input which produces a compilation error is:

```
func.func @forward(%input: !torch.vtensor<[1,64,1,100],f32>) -> !torch.vtensor<[1,64,2,200],f32> {
  %true = torch.constant.bool true
  %int1 = torch.constant.int 1
  %int2 = torch.constant.int 2
  %weight = torch.vtensor.literal(dense<0.0> : tensor<64x64x3x3xf32>) : !torch.vtensor<[64,64,3,3],f32>
  %bias = torch.vtensor.literal(dense<0.0> : tensor<64xf32>) : !torch.vtensor<[64],f32>
  %stride = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
  %int1x1 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
  %output = torch.aten.convolution %input, %weight, %bias, %stride, %int1x1, %int1x1, %true, %int1x1, %int1 : !torch.vtensor<[1,64,1,100],f32>, !torch.vtensor<[64,64,3,3],f32>, !torch.vtensor<[64],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[1,64,2,200],f32>
  return %output : !torch.vtensor<[1,64,2,200],f32>
}
```

This MLIR produces an error about a cast operation with a size mismatch
when passed through `torch-to-tosa`:

```
 error: 'tensor.cast' op operand type 'tensor<1x64x1x50xf32>' and result type 'tensor<1x64x2x200xf32>' are cast incompatible
```

---------

Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
2024-01-22 10:57:56 -08:00
Dave Liddell 2f4924015d
[onnx] Added flatten (#2760)
[https://github.com/nod-ai/SHARK-Turbine/issues/328](url)

---------

Co-authored-by: Dave Liddell <dliddell@xilinx.com>
2024-01-19 16:18:16 -08:00
Gaurav Shukla 3b85c70748
[ONNX][MLIR] Add support for onnx.gather op (#2726)
This commit adds support for gather op in the onnx pipeline.
https://github.com/nod-ai/SHARK-Turbine/issues/242

Signed-off-by: Gaurav Shukla <gaurav.shukla@amd.com>
2024-01-19 21:58:29 +05:30
John Wu 704cfdaf08
Add aten.pool_max3d support to torch-to-linalg (#2735)
Added verification logic to the abstract_interpreter_lib_gen.py

Also made some unit tests

Initially, I thought we can use `linalg::pooling_ndhwc_max` to help
implement this problem. However, on a 5-dimensional matrix it does the
pooling on dimensions (2, 3, 4) which is not what we want. We want
pooling on dimensions (3, 4, 5).

To achieve this, we would need to lower our code using the `linalg`
dialect.


Turns out the pooling code in `linalg` looks like this.

```
func @max_pooling_ncdhw(%I: memref<?x?x?x?x?xf32>, %K: memref<3xindex>, %O: memref<?x?x?x?x?xf32>,
                        %strides: memref<3xindex>, %dilations: memref<3xindex>) {
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    %N = memref.dim %I, %c0 : memref<?x?x?x?x?xf32>
    %C = memref.dim %I, %c1 : memref<?x?x?x?x?xf32>
    %D = memref.dim %I, 2 : memref<?x?x?x?x?xf32>
    %H = memref.dim %I, 3 : memref<?x?x?x?x?xf32>
    %W = memref.dim %I, 4 : memref<?x?x?x?x?xf32>

    %kernel_d = memref.load %K[%c0] : memref<3xindex>
    %kernel_h = memref.load %K[%c1] : memref<3xindex>
    %kernel_w = memref.load %K[2] : memref<3xindex>
    %stride_d = memref.load %strides[%c0] : memref<3xindex>
    %stride_h = memref.load %strides[%c1] : memref<3xindex>
    %stride_w = memref.load %strides[2] : memref<3xindex>
    %dilation_d = memref.load %dilations[%c0] : memref<3xindex>
    %dilation_h = memref.load %dilations[%c1] : memref<3xindex>
    %dilation_w = memref.load %dilations[2] : memref<3xindex>

    linalg.generic {
        indexing_maps = [
            affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d * %stride_d + kd * %dilation_d, h * %stride_h + kh * %dilation_h, w * %stride_w + kw * %dilation_w)>,  // Map for input tensor
            affine_map<(n, c, d, h, w, kd, kh, kw) -> (kd, kh, kw)>,                                              // Map for kernel tensor
            affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d, h, w)>                                            // Map for output tensor
        ],
        iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"],
        doc = "3D Max Pooling NCDHW with Strides, Dilations, and Kernel Size"
    } ins(%I, %K : memref<?x?x?x?x?xf32>, memref<3xindex>) outs(%O : memref<?x?x?x?x?xf32>) {
        ^bb0(%input_elem: f32, %kernel_elem: index, %output_elem: f32):
            %max_val = arith.maxf %input_elem, %output_elem : f32
            linalg.yield %max_val : f32
    }
    return
}

```

This was implemented based on it's source code with the adjustments
mentioned above:

4ca1b5e094/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml (L5647)

Issues related to this can be found here

https://github.com/nod-ai/SHARK-Turbine/issues/324
2024-01-19 21:09:46 +05:30
Andreas Falkenberg 4de4d38b87
Initial commit of NonZero op (#2766) 2024-01-18 15:23:13 -10:00
Rob Suderman b5387c0f29
[onnx] Lowering `onnx.dequantize_linear` to `torch` (#2759)
We can make the per-tensor version of the operation to the dequantize
operation via marking with the make quantized tensor component. This
introductions the `qint*` and `quint*` tensor type that can be lowered
to teh appropriate dequantization behavior during the torch-to-linalg
conversion.
2024-01-18 16:47:21 -08:00
Rob Suderman bd11877f6f
[onnx] Support lowering quantize linear to `torch` (#2751)
We can map the per_tensor case to the `torch.aten.quantize_per_linear`
operation. In this case we extract the `scale` and `zeropoint` values
and directly invoke the quantization, then return the integer
representation value.
2024-01-18 16:33:10 -08:00
Ze Zhang 77a03f2069
torch-to-tosa lowering support for AtenLinalgVectorNormOp (#2734)
This PR add torch-to-tosa lowering support for AtenLinalgVectorNormOp

e2e test:
python -m e2e_testing.main --config=tosa

LIT tests:
cmake --build build --target tools/torch-mlir/all

---------

Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
2024-01-18 12:32:23 -08:00
Phaneesh Barwaria eed144bfbc
[ONNX][MLIR] add Identity op support (#2754) 2024-01-16 19:06:54 +05:30
kumardeepakamd 87389f0762
[ONNXToTorch] Add conversion for Onnx range (#2752)
Implemented ONNX.Range. The spec says the data type for start, limit,
delta are 0-D can be double, float, int16, int32, int64, All int types
mapped to !torch.int and all float types mapped to !torch.float

---------

Co-authored-by: Kumar Deepak <kumar@xilinx.com>
2024-01-15 14:26:46 -05:00
Rob Suderman 197b3b475c
[onnx] Convert `onnx.constant` to `torch` literal tensor (#2748)
Handles the multiple cases of `onnx` constant values and converts them
to `torch` literal tensors. This can include splats with a single
integer or floating point value, a set of explicit integer values, or
an elements array attr of values.
2024-01-15 09:31:22 -08:00
Han-Chung Wang 10acea71be
Bump LLVM to llvm/llvm-project@0cb024b (#2753)
- Add fixes for
af78e5daf0
- Add fixes for
bb6d5c2200
2024-01-15 07:12:12 -08:00
Chi_Liu c7452af4fa
[MLIR][ONNX] Add OnnxToTorch support for Maxpool Op (#2695)
Add Maxpool ONNX op support.
Add Utils.h/cpp files to create a constant int list for ONNX.
2024-01-12 14:54:38 -08:00
Ze Zhang 670a99ae19
Handle torch.none type in tosa.clamp op (#2739)
This PR updates the torch-to-tosa conversion with following changes:

- Support torch.none as min/max input argument for tosa.clamp op
- Support negative value as start index for tosa.slice op
- Add tosa.logical_or lowering support

e2e test:
python -m e2e_testing.main --config=tosa

LIT tests:
cmake --build build --target tools/torch-mlir/all

---------

Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
2024-01-11 10:36:48 -08:00
Andreas Falkenberg 5862854bc8
[ONNX][TORCH-MLIR] LayerNorm (#2716)
Layer Normalization using the torch.aten.native_layer_norm 

https://github.com/nod-ai/SHARK-Turbine/issues/325
2024-01-11 14:27:04 +05:30
kumardeepakamd 29569713f3
support for onnx.expand operator (#2729)
maps onnx.expand to torch aten broadcast_to, three tests added

---------

Co-authored-by: Kumar Deepak <kumar@xilinx.com>
2024-01-10 13:05:37 -08:00
Vivek Khandelwal 208ae35583 [MLIR][ONNX] Add TorchToOnnx Support for DepthToSpace op
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-10 17:50:47 +05:30
Vivek Khandelwal 4707d3bdc6 [MLIR][ONNX] Add OnnxToTorch support for Bernoulli and CastLike op
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-10 16:24:06 +05:30
Vivek Khandelwal 35e8f86792 [MLIR][ONNX] Add OnnxToTorch support for Dropout and Elu op
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-10 16:23:55 +05:30
John Wu 4e5e34d215
[MLIR][ONNX] Add OnnxToTorch support for Slice Op (#2696) 2024-01-03 19:41:10 -08:00
Xida Ren (Cedar) 1778314620
add basic cumsum. this doesn't support the exclusive and reverse attrs (#2717)
fixes #2711
2024-01-03 09:52:59 -08:00
Xida Ren (Cedar) 9fc212ea9a
support Onnx opset 1-13 ReduceMean where axes is supplied as an attr (#2703)
(instead of an input)

Addresses part of #2689. fixes #2702
2023-12-28 09:31:41 -08:00
Xida Ren (Cedar) d560698e3d
Lower `onnx.split` to `torch.aten` (#2686) 2023-12-27 17:53:07 -08:00
aldesilv 2d796b7502
lower onnx max op to torch aten maximum op (#2618)
lower onnx min op to torch aten minimum op
2023-12-27 11:07:35 -08:00
aldesilv 336cfb64b5
OnnxToTorch support for onnx.Mul op (#2699) 2023-12-27 10:50:08 -08:00
Xida Ren (Cedar) 6847fc1fc6
Fix since-opset too high (#2701)
Addresses two of the ops from
https://github.com/llvm/torch-mlir/issues/2689

https://github.com/llvm/torch-mlir/issues/2700
2023-12-27 10:08:09 -08:00
aldesilv abc6b0a25a
onnx to torch pow support (#2656) 2023-12-27 09:34:48 -08:00