Bump forward and refactor inline global slots to no longer track via
symlinks. This appears to make the tests past until we manage to remove
torchscript work.
As titled, create a new decomposition for `aten.fmod.Tensor` to
`aten.div`, `aten.trunc`, `aten.mul` and `aten.sub`. Note that we only
use `aten.trunc` for floating point operations. This further gets
decomposed to `aten.where` etc. by other existing decompositions.
This decomposition now makes TOSA pass for a simple model with
`aten.fmod` while it makes `stablehlo` fail. For now, we disallow this
decomposition for `stablehlo`
---------
Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
Addresses an issue in <https://github.com/llvm/torch-mlir/issues/3651>
where some unflatten ops generated from onnx models weren't propagating
static shape information. It may be necessary to add further
optimizations for the more general case when some static information is
present in the unflatten (or possibly reshape/view) op's `sizes` list,
but not reflected in the output shape. These ops will only successfully
infer shapes if the `sizes` list is gotten from a list of constant ints
(with possibly one -1). A common example where this fails is when some
of the `sizes` are determined from `aten.size.int` ops on dynamic
tensors, and other `sizes` are known statically.
This PR includes:
- a canonicalizer for `aten.unflatten.int` which converts to
`aten.unsqueeze` when it is expanding one dim to two, and one of the new
dims is statically 1.
- an improvement to the folder for `aten.__or__.bool` which does not
rely on *both* operands being static.
This PR add `floordiv` to the `PY_BUILTIN_TO_TORCH_OP`. For
`aten.mul.int` and `aten.floordiv.int` ops, we add new Canonicalization
Patterns as follow:
```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.mul.int %1, %const-6
```
Will be replaced by
`torch.aten.mul.int %input, %const-30`
And
```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.floordiv.int %1, %const-5
```
Will directly return `%input`
This PR also relaxes the `float` type constraint in TorchToTosa for the
`AtenRsubScalarOp` conversion.
To test:
`cmake --build build --target check-torch-mlir-all`
This commit adds the shape info for the tensors created during the
decomposition of GroupNorm op.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Set PyTorch and TorchVision version to nightly release 2024-08-18.
This commit also updates the `scaled_dot_product_attention` op.
A new attribute `enable_gqa` has been added. As of now, only the
default value for the same is supported.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
The einsum lowering was missing the behavior for duplicate indices in
the equation. This amounts to a diagonalization along duplicate pairs of
indices in the equation.
This patch adds basic support for lowering graphs with per-channel
quantization. Per-channel quantized ops have to be excluded from
`FuseQuantizedOps` for now but can be used in QDQ quantized form.
Using this patch, we're able to import and execute (on the linalg
backend) graphs with per-channel quantization applied using the "new"
PyTorch 2.0 Export Quantization.
The static uneven divisible AdaptiveAvgPool2d means that although the
input size is not an integer multiple of ouput size, but the kernel and
stride size can also be fixed (not dynamic). The derivation logic of
kernel and stride size is consistent with
torch/_decomp/decomposations.py:adaptive_avg_pool2d as described in the
following:
1. Stride Size
Firstly , derive the start index in each reduce operation according to
the output size (`n`), `start_index = ([0, 1, ..., n - 1] * input_size)
// output_size`. For each index `k`, if `k * (input_size % output_size)
< output_size`, then the current and previous stride keeps the same as
`input_size // output_size`. So suppose `(n-1) * (input_size %
output_size) < output_size`, the stride in the whole AdaptiveAvgPool2d
process keeps static, as `input_size // output_size`.
2. Kernel Size
torch/_decomp/decomposations.py:adaptive_avg_pool2d calculates a static
kernel size when the input/output sizes satisfy either of the two
conditions, `input_size % output_size == 0` or `output_size %
(input_size % output_size) == 0`. Here if `input_size % output_size ==
0`, then the kernel size equals `input_size // output_size`, otherwise
`input_size // output_size + 1.`
This PR adds a conversion in the TorchOnnxToTorch pass for the ONNX
Multinomial operation. It also adds a TorchToLinalg lowering for the
`aten.Multinomial` op and does a light refactor of some repeated code
that generates random floating point numbers in
`TorchToLinalg/Random.cpp`.
This patch adds a few misc pad op related changes:
1. Addresses issue <https://github.com/llvm/torch-mlir/issues/3457>
2. Addresses issue <https://github.com/llvm/torch-mlir/issues/3442>
3. Fixes the padding order for asymmetrically padded onnx.Conv ops
4. Enables passing quantization through those onnx.Conv op pre-paddings
5. Modifies the torch-to-linalg lowering of AtenReplicationPad2d op to
enable support for input rank != 4
Unfortunately, even with all of these changes, the e2e tests for the
ReplicationPad2d still fail the onnx config, since the torch export
procedure for rearranging the pad order is complicated enough that the
padding ints end up not being able to fold back to constants.
Register `aten.fake_quantize_per_channel_affine` and
`aten.fake_quantize_per_tensor_affine.tensor_qparams` ops
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Fix the pad tensor rearrangement such that we change the representation
from [x1_begin, x2_begin, ..., x1_end, x2_end,...] to [xn_begin, xn_end,
...., x2_begin, x2_end, x1_begin, x1_end] where x1, x2 .. xn are the
dimensions of the pads tensor argument.
---------
Co-authored-by: zjgarvey <zjgarvey@gmail.com>
Co-authored-by: zjgarvey <47986913+zjgarvey@users.noreply.github.com>
Due to the custom operation parser, the print and parser were expecting
two different forms.
One having the dictionary before the value and the other after.
Following the format of the other constants ops, the constant.int will
follow the `value attr-dict` format. Updated the parser accordingly.