Commit Graph

95 Commits (c19fc9ba4767f4212f980002e6d3cef9cccec47b)

Author SHA1 Message Date
zjgarvey c19fc9ba47
[ONNX] Fixes Issue with Dynamic Dims in GlobalAveragePool -> Torch Conversion (#3053)
Two e2e tests (AdaptiveAveragePool1/2dUnitOutputSizeDynamic) were
failing due to numerics. This was as a result of passing -1 as the
kernel size in the lowering for the corresponding onnx op
GlobalAveragePool.
2024-03-28 09:43:09 -07:00
Xinyu Yang e6e7689a24
[Torch] support decompose aten.einsum with ellipsis slicing (#3056) 2024-03-27 12:42:10 -07:00
Rob Suderman 14b548f968
[torch] Improve shape inference for `torch-to-linalg` path for reshapes (#3055)
Reshaping tensors depend on directly matching individual dimensions to
their corresponding dim in the `torch.view` reshape dimensions. This
involves decoupling dynamic dimensions from their static counterparts
and support cleanup / canonicalization.
2024-03-26 12:41:40 -07:00
Vivek Khandelwal 9ae33e482e
[MLIR][TORCH] Add OnnxToTorch lowering for ops (#3049)
This commit adds the OnnxToTorch lowering for the Mish, Softplus,
HardSwish, Trilu, ThresholdedRelu op

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-03-25 20:29:07 +05:30
schnkmwt 1fcbfa87ec
Implement linalg lowering of diag_embed torch op (#2885)
This PR adds lowering of diag_embed to linalg dilect.
Tracked in https://github.com/nod-ai/SHARK-Turbine/issues/288

---------

Co-authored-by: sachink <sachink@xilinx.com>
2024-03-22 16:32:50 -07:00
zjgarvey 99b3a5f117
Converts all Adaptive Pooling Ops to Linalg (#2808)
The previous conversions for AtenAdaptiveAvgPool1dOp and
AtenAdaptiveMaxPool2dOp are refactored into a general templated
conversion that works for all of the AtenAdaptive...PoolNdOp's.

New support is added for the following ops:

1. AtenAdaptiveMaxPool1d
2. AtenAdaptiveMaxPool3d
3. AtenAdaptiveAvgPool3d

Support is also provided for passing inputs without batch dimensions.
For example, applying adaptive_avg_pool2d to an input tensor of rank 3.

After [pytorch #118162](https://github.com/pytorch/pytorch/pull/118162)
gets down to torch-mlir, I'll add a test for AdaptiveMaxPool1d with
return_indices (which will pass with that upstream fix).

---------

Co-authored-by: James Newling <james.newling@gmail.com>
2024-03-22 11:05:20 -07:00
zjgarvey 6aa481c204
[ONNX] LogSoftmax to Torch (#3024)
This PR adds support for onnx.LogSoftmax both for old versions (<13,
with axis >=0), and new versions (13).
2024-03-22 11:01:39 -07:00
Rob Suderman 3a56714bff
[torch] Fix clamp ranges on quantize_per_tensor on unsigned (#3018)
SExtValue was used for `int` and `uint` clamp values. This caused the
result to always be outputed as `zero`.
2024-03-20 13:37:47 -07:00
Xida Ren (Cedar) cb5cb506df
Fix SCF Forloop fails to convert to linalg when a tensor argument is supplied to the loop block (#3040)
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-03-20 11:04:02 -07:00
zjgarvey 6ff71b40c8
[ONNX] onnx.DynamicQuantizeLinear to Torch (#3009)
This adds support for converting DynamicQuantizeLinear from torch-onnx
to torch.

I could not get an e2e test to pass, since there seems to be some issues
with uint8 casting somewhere lower in the pipeline. For example
compiling with IREE for llvm-cpu, I would get either the correct zero
point (if zp < 128) or the correct zero-point minus 256 (if zp >= 128).
The output tensor seems to always return a tensor of zeros, which also
occurs when running uint8 examples through QuantizeLinear.

Edit: the first problem can be resolved by casting the output back to
uint8 on output, the second problem is resolved with PR #3018
2024-03-20 10:58:25 -07:00
Abhishek-TyRnT df02692726
Dynamic size support for flatten (#3005)
Added support for dynamic shapes in `flattenusingints` op in tosa
dialect. Due to this some Argmax tests pass
This PR fixes this issue https://github.com/llvm/torch-mlir/issues/3004

The following tests pass after this PR
 ```
1. "ArgmaxIntModule_basic"
2. "ArgmaxIntModule_multiple_maxs"
3. "ArgmaxModule_basic"
```
2024-03-19 15:19:29 -07:00
Pavani Chowdary c51e2130f2
[onnx] support for lowering mod op from onnx to torch (#2859)
nod-ai/Shark-Turbine#267

---------

Authored-by: boddu.pavani@research.iiit.ac.in
Co-authored-by: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-03-18 17:54:37 +05:30
Xinan Jiang(姜曦楠) d8a52e82c2
[onnx] Fix onnx.cast cases between int32 and int64 (#2982)
2 modifications:
1. torch.int64 is enum 4 in TORCH_DTYPE_TO_INT
2. add int32 support
2024-03-15 17:14:09 +00:00
Yuanqiang Liu 4282eb9e76
[Torch Dialect] support aten.fake_quantize_per_tensor_affine (#3014) 2024-03-15 08:53:29 +08:00
Yuanqiang Liu 870e63bc3c
[Torch Dialect] support decomposition of aten.linspace (#3006) 2024-03-14 08:28:33 +08:00
ptrifunovic98 524ff99216
Implement lowering of torch.aten.linalg_cross (#2986)
Closes
[nod-ai/SHARK-Turbine#497](https://github.com/nod-ai/SHARK-Turbine/issues/497)
2024-03-13 12:17:22 -07:00
Yuanqiang Liu ad6159c7cb
[Stablehlo] lowering aten.round to stablehlo.round_nearest_even (#3011) 2024-03-12 08:58:20 +08:00
Devjiu 4b1e87ce67
[TorchDynamo] Enable Elemtwise ops for Scalar arg (#2744)
This commit provides dummy solution to support elmentwise operations
(mul, add) with scalar argument. ( op(Tensor, Scalar) )

It replaces `torch.aten.add.Tensor` with `torch.aten.add.Scalar`.
```
Unexpected outcome summary: (torchdynamo)

****** Unexpectedly Passed tests - 22 tests
    XPASS - "AddCDivModule_basic"
    XPASS - "BatchNorm1DModule_basic"
    XPASS - "BatchNorm1DStaticShapeModule_basic"
    XPASS - "BatchNorm1DWith2DInputModule_basic"
    XPASS - "BatchNorm2DModule_basic"
    XPASS - "BatchNorm3DModule_basic"
    XPASS - "ElementwiseAddScalarInt64Module_basic"
    XPASS - "ElementwiseAddScalarIntModule_basic"
    XPASS - "ElementwiseMulScalarModule_basic"
    XPASS - "ElementwiseMulScalarModule_float"
    XPASS - "ElementwiseMulScalarModule_int"
    XPASS - "GroupNormModule_basic"
    XPASS - "GroupNormNoWeightAndBiasModule_basic"
    XPASS - "MobilenetV3Module_basic"
    XPASS - "NativeBatchNorm1DModule_basic"
    XPASS - "NativeBatchNorm2DModule_basic"
    XPASS - "NativeBatchNorm3DModule_basic"
    XPASS - "NativeBatchNormNoneWeightModule_basic"
    XPASS - "NativeGroupNormBackwardModule_basic"
    XPASS - "NativeGroupNormModule_basic"
    XPASS - "ResNet18Module_basic"
    XPASS - "ResNet18StaticModule_basic"
```

And segfault for test
"ElementwiseAddScalar_TensorLiteralInt32_Module_basic". Somehow this
change doesn't allow to use Tensors, that are not forward arguments, but
local variables of model.
e.g. `self.x = torch.tensor(..)`

See also: #2745

Signed-off-by: Dmitrii Makarenko <dmitrii.makarenko@intel.com>
2024-03-11 12:22:05 -07:00
Rob Suderman 8fb28661f9
[onnx] Fix onnx.ReduceMean lowering (#3002)
Reduce mean lowerings did not succesfully lower to `linalg` via torched.
There were two separate paths that could be consolidated to a single
simpler pass. This resulted in a significant improvement in test
coverage.
2024-03-11 11:32:53 -07:00
Rob Suderman bd7f1baa42
[onnx] Fix expand operation for dynamic shape max (#3001)
If the broadcast shape is length-1 at a dim while `?` in the input dim
then we need to broadcast to the dynamic dim. This is equivalent to
taking a max of two dimensions.
2024-03-08 16:23:07 -08:00
Rob Suderman 0723584936
[torch] Add folder for torch.aten.*.Scalar comparisons (#3000)
This folds small version of the tensor-scalar comparison operators as
they are commonly used for shape computations. This includes le, lt, ge,
gt, eq, and ne.
2024-03-08 13:44:00 -08:00
Andreas Falkenberg 551a4e45f3
[onnx] Add support for `onnx.Gemm` with no bias (#2993)
Previous gemm version required a bias vector. 
This provides an alternate path to `Torch::AtenMm`
with no bias operation.
2024-03-07 15:58:38 -08:00
Rob Suderman 1964208d19
[onnx] Fix constant pad for dynamic shape (#2989)
The current padding operation was not functional for dynamic shapes.
Updated and enabled tests so that onnx.pad tests pass.

Work TBD for reflection padding.
2024-03-07 13:29:50 -08:00
Scott Todd 7b18646def
[onnx] Handle optional arguments in Clip op pattern. (#2976)
Spec: https://onnx.ai/onnx/operators/onnx__Clip.html
2024-03-07 17:25:14 +00:00
Vivek Khandelwal 6e84752c39
build: manually update PyTorch version (#2992)
Set PyTorch and TorchVision version to nightly release 2024-03-07.
This commit also removes the deprecated constraints API:
342e7929b8

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-03-07 21:42:38 +05:30
Rob Suderman a78659742a
[onnx] Migrate `onnx.ReduceMax` to match `onnx.ReduceMin` (#2981)
This mostly copy-pastes the reduce minimum implementation to reduce max
to improve test coverage. We also improve the aten lowering for min/max
dim for unsigned types.
2024-03-06 16:48:21 -08:00
Andreas Falkenberg ea76dd12ba
[onnx][torch] Gridsampler E2E test and corrections of gridsampler (#2987)
The addition of an e2e test is actually provided in the Shark-Testsuite.
This adds 2 test cases for the gridsampler e2e test. 
Also as intended there were some items found which needed correction, so
the Gridsampler op has also a change.
2024-03-06 10:56:58 -08:00
Rob Suderman 06292d9429
[torch] Rework `aten.repeat` to use flatten and unsqueeze (#2984)
Current implementation depends on using `aten.view` which has issues
inferring tensor collapse/expand operations during the lowering to
`linalg`. Using flatten and unsqueeze better infers what the later
reshape behavior.
2024-03-06 10:19:18 -08:00
Ze Zhang aa7c9a9653
e2e support aten.linalg_norm to aten.linalg_vector_norm (#2953)
Add e2d support for `aten.linalg_norm` by decompose it to
`aten.linalg_vector_norm`.

Lowering to `aten.linalg_matrix_norm` is still unsupported.

To Test: 

`python -m e2e_testing.main -v`

---------

Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
2024-03-05 16:31:01 -08:00
Rob Suderman bc0527676b
[torch] Add support for `torch.split_with_sizes` via decompose (#2979)
Convert to individiual slices and tuple together as a list.

---------

Co-authored-by: Scott Todd <scott.todd0@gmail.com>
2024-03-05 15:01:21 -08:00
Chi_Liu 09875fabd1
[MLIR][ONNX] Add ONNX ReduceProd support (#2943)
Alternatives to https://github.com/llvm/torch-mlir/pull/2908

Fix https://github.com/nod-ai/SHARK-Turbine/issues/353
2024-03-04 11:07:03 -08:00
Rob Suderman d51e80b648
[onnx] Fix onnx.gather lowering for rank-0 indices (#2973)
We assumed rank was atleast 1 however it can be rank-0, generating an
illegal pair of flatten / unflatten operations. Corrected this.
2024-03-04 08:25:19 -08:00
Rob Suderman 61f0a5facf
[torch] Add an `aten.cat` length-0 canonicalization (#2966)
If an input is length-0 along the dimension of canonicalization we can
remove the tensor from the list
2024-03-01 21:41:12 -08:00
Rob Suderman d030bffc62
[torch] Support `aten.view` rank-0 collapse (#2965)
Collapsing to a rank-0 tensor using `aten.view` was currently bailing
out. Added the special case.
2024-03-01 12:31:07 -08:00
mmakevic 76b81e0ccd
Implement lowering of torch.aten.fmod.Tensor (#2767)
Closing https://github.com/nod-ai/SHARK-Turbine/issues/351
2024-02-29 11:22:03 +05:30
Rob Suderman ed6e75908b
Bump LLVM to llvm/llvm-project@e5ed7b6e2f (#2964) 2024-02-28 14:13:26 -08:00
Rob Suderman 6f3d62ab04
[torch] Fix folders and `cat` and `view` torch lowerings (#2963)
A bunch of small fixes are interlinked and trigger crashes if not
addressed as a group. This includes:

- aten view when expand from a rank-0 tensor
- slice folder with negative indices
- `aten._shape_as_tensor` folder on a rank-0 tensor
- `aten.cat` of a tensor with a length-0 tensor
2024-02-28 12:04:52 -08:00
Rob Suderman 08bc013fcd
[tosa] Fix TOSA batch matmul lowering to correct transpose ordering (#2959)
The corrective transpose at the end is computed incorrectly. Is it
actually computin the inverse transpose. Inverting the permutations
fixes the issue.
2024-02-28 09:46:58 -08:00
Rob Suderman 4a7a7d76f8
[onnx] Fix ReduceMean lowering to torch (#2956)
Torch lowering only supported the most recent version. Refactored the
lowering so more easily handle default values and optional operands /
attributes.
2024-02-27 22:48:07 -08:00
Abhishek-TyRnT d541779f37
Add support for torch arange float module (#2749)
Added Support for float dtype in in torch.arange in TOSA Dialect

This resolves the following issue :- 
https://github.com/llvm/torch-mlir/issues/2762

The following test cases are passing after this change

1. ArangeDtypeIntModule_basic
2. ArangeFloatModule_basic
3. ArangeNegativeStartFloatModule_basic
4. ArangeStartFloatModule_basic
5. ArangeStartNegativeStepFloatModule_basic
6. ArangeStartOutDtypeModule_basic
7. ArangeStartStepFloatModule_basic

---------

Co-authored-by: James Newling <james.newling@gmail.com>
2024-02-27 13:40:55 -08:00
Vivek Khandelwal d628b5fd06
[MLIR][TORCH] Add support for tanh approximation for Gelu op (#2941)
Fixes https://github.com/nod-ai/SHARK-Turbine/issues/461

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-02-27 19:26:01 +05:30
Vivek Khandelwal d81747eadb
[MLIR][TORCH] Extend support for OnnxToLinalg lowering for Dropout and Div op (#2938)
Fixes https://github.com/nod-ai/SHARK-Turbine/issues/451,
https://github.com/nod-ai/SHARK-Turbine/issues/452
2024-02-27 11:02:05 +05:30
ptrifunovic98 c5a1da1910
Implement lowering of torch.aten.norm.Scalar (#2899)
Closes
[nod-ai/SHARK-Turbine#365](https://github.com/nod-ai/SHARK-Turbine/issues/365)
2024-02-26 08:46:56 -08:00
Rob Suderman 53f6d06ab8
[onnx] Drop `ConstantOfShape` logic form importer, fix torch lowering (#2930)
There is no reason to treat `ConstantOfShape` as a specialized import
any as there exists a onnx-to-torch equivalent. Dropping the import
coding and adding support for resource conversion substantially
increases test coverage for dynamically shaped tests.
2024-02-21 21:34:43 -08:00
Rob Suderman df2aa1a369
[torch] Fixed edge conditions for strided slicing (#2929)
Strided slicing can occur with a negative stride. In these cases we need
to bound end differently. This included removing a function that was
generating bad limits.
2024-02-21 21:28:44 -08:00
Rob Suderman 13113df33e
[onnx] Enable crashing tests (#2928)
Crashing tests no longer crash, enable as either passing or xfail tests.

Co-authored-by: Xida Ren (Cedar) <cedar.ren@gmail.com>
2024-02-20 18:34:21 +00:00
Rob Suderman 13553d49c9
[onnx] Update the importer to create a `none` for missing operands (#2931)
Some operands are optional so we require a placeholder for missing
operands. We invent an `onnx.None` operation as our placeholder.
2024-02-20 09:30:30 -08:00
Rob Suderman 135c81a416
[torch] Add folder for `prim.NumToTensor.Scalar` (#2921)
Useful for `slice` lowerings that depend on tensors made form scalars.
2024-02-19 11:55:54 -08:00
Rob Suderman cea51897a5
[onnx] Simplify onnx.slice lowering (#2919)
Onnx slice lowering used arange needlessly instead of directly
constructing the constant dimension values. This makes lowerings to
linalg struggle as multiple folders are required to get what is a
constant index value.
2024-02-19 10:26:29 -08:00
aldesilv d29157b33f
OnnxToTorch support for onnx.InstanceNormalization op (#2710)
https://github.com/nod-ai/SHARK-Turbine/issues/327
2024-02-19 19:53:48 +05:30