The function `getTypeForScalarType` currently takes an argument to
specify the signedness of integer types. This is leakage of backend
specific requirements into the torch dialect world. Because
`getTypeForScalarType` is a utility function for the torch dialect, it
should only produce types that match the sign conventions used by
PyTorch (regular integers are signed and unsigned integers are
unsigned).
This commit removes the signedness argument from
`getTypeForScalarType`, and moves the backend specific handling of
integer types to the backend code.
This commit adds the OnnxToTorch support for Atan, Bitshift, BitwiseAnd,
and BitwiseNot op.
This commit also adds the TorchToLinalg support for AtenBitwiseLeftShiftTensorOp.
Signed-Off By: vivekkhandelwal@nod-labs.com
Adds support for lowering to prims split_op.
Similar design to collapse op lowering in
https://github.com/llvm/torch-mlir/pull/2572, with some
small differences, because the split_dim op (in pytorch) is
view-changing whereas the collapse is not. The difference
means that
1) it must be registered in the function Torch::isViewLikeOp
2) it must be be added to the "expected fail" set for the torch dynamo backend.
Steps taken:
1) add generator code to torch_ods_gen.py, run update_torch_ods.sh
2) add (custom) shape and type inference generator code to
abstract_interp_lib_gen.py, run update_abstract_interp_lib.sh
3) Implement lowering to tensor.collapse_dims. Requires the `start` and
`end` values to be constant, else lowering fails
4) Update xfail_sets.py (append to LTC_XFAIL_SET) after running
/tools/e2e_test.sh --filter Collapse --verbose -c XX for all support
backends (XX).
Motivation:
- Supporting the collapse operation will be useful for lowering of
pixel_shuffle (see Issue #2559)
When importing dynamic shaped programs from Dynamo, via torch.compile or
torch.export, we can assume that strict symbolic shape checks have been
done prior to generating torch IR. Among other shape checking, this
eliminates the case where an unknown dimension can be dynamically '1' in
a way that signals a broadcast.
Adds a `isAssumingStrictSymbolicShapes` utility which consults a
`torch.assume_strict_symbolic_shapes` attribute on an enclosing scope
and returns true if present.
In the linalg pipeline, many runtime checks are elided when this returns
true.
This commit updates the `llvm-project` and `mlir-hlo` submodules to
commits:
llvm-project: a3f2751f782f3cdc6ba4790488ec20163a40ac37
mlir-hlo: 97c7e4b4506c3a2441c923e592833f45da439009
Changes made:
- Rename `getSuccessorEntryOperands` with `getEntrySuccessorOperands`
and remove `operands` from
`getSuccessorRegions` (https://reviews.llvm.org/D157506)
- Make `TypeConverter` a `const` (https://reviews.llvm.org/D157601)
check the return type of the division to figure out whether to use
the floating point implementation of a division or to use the integer.
the issue rose from the fact that the inputs are all integer but the
result was casted to floating point. The conversion then chose to
use the integer implementation of division which is not legal in tosa
when all the inputs get casted to floating point.
fix(TorchToLinalg): AtenDivScalarOp
upcast self operand as well if applicable, the self operand must also
be casted to float as it can be an integer.
* add support for mhlo
* Add Test for torch.ne
* fix torch.ne shape/add static test case
* add support for static torch.ne
---------
Co-authored-by: root <root@n31-177-039.byted.org>
This reverts commit eaab9be207, since it
is causing the post-merge CI tests to fail, causing subsequent PRs to be
blocked. Specifically, the tests
`ElementwiseAtenLogicalAndOpPromoteBroadcastModule_basic` and
`ElementwiseAtenLogicalXorOpPromoteBroadcastModule_basic` fail because
the oracle does not match the computed result. This patch reverts the
commit to make the post-merge builds green again.
- Support for non-prefixed accessors has been removed. See:
https://reviews.llvm.org/D136727
- Rename `operands` to `methodOperands` in `prim.CallMethod` since the
name `operands` overlaps with a builtin method name. See:
https://reviews.llvm.org/D136727
- Add passes in refbackend to lower memref.subview. See:
https://reviews.llvm.org/D136377
- Replace `CopyToValueTensorOps` first in `RewriteViewLikeSubgraph` in
maximize-value-semantics.
The current implementation of the `RewriteViewLikeSubgraph` pass in
maximize-value-semantics creates temporarily invalid IR. In
particular, given a forward slice starting from a
`CopyToNonValueTensorOp` and ending in `CopyToValueTensorOp`s, the
pass first replaces all uses of the `CopyToNonValueTensorOp` with
its operand, which results in all the `CopyToValueTensorOp` users
having their operand have type `!torch.vtensor`, which is invalid.
The correct way to do things is to first replace all the
`CopyToValueTensorOp`s with their operand, and then replace all uses
of the `CopyToNonValueTensorOp` with its operand.
This only started failing now because the generated accessor
`getOperand` for the `CopyToValueTensorOp` now returns a
`TypedValue<NonValueTensorType>`, which has an assert checking that
the value returned is of the expected type.
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
This commit adds lowering of `aten.div.int` and `aten.bitwise_or.Tensor`
ops. Both these ops are required in order to support bloom_560m model.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Summary of changes:
- Updated references to the Arith dialect
(https://reviews.llvm.org/D134762)
- Switched to prefixed accessors for MemRef dialect
(https://reviews.llvm.org/D134995)
- Fixed warnings about signed/unsigned comparisons, ignored return
values, and unused variables
The original conversion pattern for `AtenBatchNormOp` required that
the input rank be greater than 2; however, the only
expectation in the conversion pattern and in Pytorch is that the input
rank is greater than 1, since the second dimension of the input must
match the size of the `weight`, `bias`, `runningMean`, and
`runningVar` inputs. This commit fixes the `inputRank` check.
Prior to this patch, the torch dialect included `AtenTriuOp` for
computing the upper triangular part of the input matrix, but there was
no code for lowering the op to the linalg dialect.
This patch adds code to generate a `linalg.generic` operation that
compares indices (computed using `linalg.index`) to choose between zero
or the original value (using `arith.select`). The lowering fails if the
number of dimensions are less than two. This patch also adds a few
end-to-end tests.
This commit adds lowering of `aten.div.Tensor_mode` op.
This commit also fixes formatting for the test file elementwise.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
When compiling without assertions (i.e. in `NDEBUG` mode), a handful of
statements turn to NOPs, which results in warnings such as missing
return statement or unused variables and function. This patch replaces
such statements with `llvm_unreachable()`, which informs the compiler
about program termination regardless of the `NDEBUG` mode. This also
enables torch-mlir to be compiled using the flags `-Wall`, `-Wextra`,
`-Wpedantic`, and `-Werror`.
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function. It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.
There exist several opportunities to make this lowering optimal and
robust. For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf. For L1 norms, we don't need to raise
each element to the power 1.0. Similarly, L2 norms could benefit from
strength reduction. Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
This commit adds lowering of `aten.masked_fill.Scalar` op.
This commit also fixes the formatting of the file constant_alloc.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
* shape: add shape transfer function for aten.neg
Prior to this patch, the list of shape transfer functions did not
include `aten.neg`, which resulted in errors like below.
```
error: unsupported by backend lowering: tensor with unknown rank or dtype
note: see current operation: %0 = "torch.aten.neg"(%arg0) :
(!torch.vtensor<[256,256],f32>) -> !torch.vtensor<*,f32>
note: this is likely due to a missing shape transfer function in shape_lib_gen.py
```
This patch fixes the problem by adding a shape transfer function to
reflect the point-wise nature of this operation.
* linalg: add translation of aten.neg operation
This patch adds a translation rule to lower `aten.neg` operations on
tensors to an `arith.negf` operation wrapped inside a `linalg.generic`
operation. This patch also adds a rudimentary test.
This commit adds the following support to the op `nll_loss_backward`:
- `input` tensor can be rank-1
- `weight` parameter
- `reduction` parameter
- `target`, `grad_output`, `total_weight` can be rank-0
- Checks that input tensors are of the expected type
In order to make sure that the TorchToLinalg conversions leave the
graph in a valid state, the final result of the conversion has to be
casted to the result type of the op. This commit adds this cast to ops
that did not have it.
This commit fixes the 2nd and 3rd return types of the `aten.native_layer_norm`.
Previously the mean and rSTD were returned with reduction dims removed.
This commit fixes this and keeps the reduction dims of the results.
Signed-Off-By: Prateek Gupta <prateek@nord-labs.com>
The term "pseudo" is very vague and was getting confusing (I felt I had
to explain it in every comment referencing it). Instead, rework the
"pseudo" ops to instead be named:
- MLIR Syntax: `torch.valsem.*`
- C++ / ODS: `ValsemVariant*Op`
This makes it clear what the concept is, and avoids confusion with other
things that might be called "pseudo", since these are very specific and
should be 100% consistently named w.r.t. the non-valsem-variant ops that
they correspond to.
This helps keep things organized and also exposes more parallelism to
the build system. It seems though that most of the compile time is
actually spent in the headers though, so the wall time doesn't decrease
as much as I had hoped (and now that the headers are being included
multiple times, the cpu time actually increases a lot, sadly -- will try
to dig into this).