The current implementation of `getScalarValue` does not check that the
input to a `ValueTensorLiteralOp` is an i64 before extracting the
value, and it does not check that the result type of the
`PrimNumToTensorScalarOp` is also an i64. This leads to crashes or
invalid IR generated when the `input` is something other than an i64
tensor or `!torch.int`.
This commit addresses those issues. In addition, the function
`getScalarValue` is renamed to `getScalarIntValue` to make it clear
that it *only* extracts scalar integers.
The data-flow analysis does not always propagate information to the
entire graph. This results in some lattice elements being
uninitialized. Currently the lattice elements are not checked to see
if they are uninitialized before rewriting the graph, potentially
resulting in invalid IR (see
https://github.com/llvm/torch-mlir/issues/1896).
This commit adds handling for uninitialized lattice elements.
Set PyTorch and TorchVision version to nightly release 2023-02-27.
This commit also adds the lowering for aten.add and aten.Float.Scalar op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.
This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
Rename BlockAndValueMapping to IRMapping
Moved PrimTupleConstructOp type validation to its own verifier as the
tablegen version does not work for a combination of variadic input and
non-variadic output.
`llvm::makeArrayRef` is now deprecated and can be
replaced by the newly introduced `ArrayRef` deduction guides.
Fixes: #1808
Co-authored-by: Victor Guerra <vm.guerramoran@criteo.com>
One of the potential values for a `torch_upstream::ScalarType` is
`Undefined`. This means that conversion of a `ScalarType` to another
type is a computation that can fail. To enforce handling of the
failure case, this commit makes the two helper functions that convert
`ScalarType`s into other types return `failure()` when the
`ScalarType` is `Undefined`.
Credit to @vivekkhandelwal1 for finding the necessary changes.
Summary of changes:
- Switch Tosa_IntArrayAttr[N], Tosa_IntArrayAttrUpto[N] to DenseI64ArrayAttr.
- Replace kNoIterationLimit with kNoLimit. (https://reviews.llvm.org/D140525)
- Add dependency on MhloPasses when MHLO is enabled
- Specify result type when using mhlo::DotOp
There are several decompositions that assume the operands of the op
have dtypes available; however, the only time dtypes are guaranteed to
be present is when the graph has reached the backend contract. In
general, every pass that happens before reaching the backend contract
should not assume dtypes are available and should use `hasDtype` to
check first.
This commit adds `hasDtype` checks to every decomposition that uses
dtypes.
This commit replaces the `tanh` dtype function, which was being used
to test the implementation of dtype functions in
a710237437, with a dtype function for
`expm1`. The dtype function for `expm1` is identical to the `tanh`
one, so the same level of testing is maintained.
Currently, there are ops getting dtype information from the
`RefineTypes` pass and ops getting dtype information from the
`TorchDtypeRefinementPipeline`. Since each pass can only propagete
dtype information for the ops it knows how to handle, some models with
many ops handled in both passes require the two dtype propagation
passes to execute many times, reaching the iteration limit set in the
`LowerToBackendContractPass`. To temporarily avoid this issue while
the migration to `TorchDtypeRefinementPipeline` is finished, this
commit switches `tanh` to `expm1`, since the latter is used a lot less
in large models.
This reverts commit eaab9be207, since it
is causing the post-merge CI tests to fail, causing subsequent PRs to be
blocked. Specifically, the tests
`ElementwiseAtenLogicalAndOpPromoteBroadcastModule_basic` and
`ElementwiseAtenLogicalXorOpPromoteBroadcastModule_basic` fail because
the oracle does not match the computed result. This patch reverts the
commit to make the post-merge builds green again.
-- The dtype of the result of `aten.embedding` should match that of
the `weight` operand's (operand[0]) instead of hardcoding to f32.
-- This commit aims to provide a fix for the same.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Summary of changes:
- LLVM now includes <optional> instead of "llvm/ADT/Optional.h" in most
(although not all) places
(https://reviews.llvm.org/rG541ef3d61e9341cd38420c0dbca9250c4d0ea04c).
This patch replaces the affected instances of `llvm::Optional` with
`std::optional`.
- In the usages of llvm::Optional that remain, llvm::Optional::value()
is deprecated, so this patch replaces them with a dereference.
Functions like `getTypeForScalarType` that do a mapping from one set
of types to another should not fail, and if they do it
should be obvious to the developer that that function has an
unhandled case.
Instead of silently failing when encountering an unsupported type,
this commit adds a `report_fatal_error` at the end, similar to other
type translation functions in this file.
In order to verify if a given IR satisfies the backend contract, the
verifier needs to know if decompositions took place, and if so, which
ops were decomposed and which were not.
This commit adds two arguments to `verifyBackendContractPass` to
specify if decompositions took place and which ops to consider backend
legal, similar to the arguments of `LowerToBackendContractPass`.
Summary of changes:
- Replace `llvm::None` with `std::nullopt`, since the former is deprecated
(https://reviews.llvm.org/D139763)
- Use setter for symbol visibility instead of passing string attribute when
creating FuncOp
* [custom op] Generalize shape library logic to work with dtypes
This commit generalizes the shape library logic, so that dtype rules
for ops can also be expressed using the same mechanism. In other
words, each op can now have a shape function and a dtype function
specified in Python that is imported during lowering to calculate the
shapes and dtypes throught a program. For more information about how
to specify a dtype function, see the updated
`docs/adding_a_shape_and_dtype_function.md`.
For those not familiar with how the shape library works, the file
`docs/calculations_lib.md` provides an overview.
Currently `getTensorRank` returns -1 if it was unable to get the rank
of the tensor. However, not every use in the codebase was checking the
return value, and in some cases, the return value was casted to
unsigned leading to some infinte loops when an unranked tensor reached
a decomposition.
This commit changes the return of `getTensorRank` to
`Optional<unsigned>` to make it clear to the user that the function
can fail.
This commit also changes a couple of for loops that iterate a vector
in reverse order that can potentially become infinite loops into
range-based for loops.
A circular dependency was introduced in e7edcc62fd.
Specifically, the `makeShapeLLVMCompatible` and `makeShapeTorchCompatible` utilities were being called from `lib/Dialect/Torch/IR/TorchTypes.cpp` and `lib/Dialect/Torch/IR/TorchOps.cpp` defined under the `:TorchMLIRTorchDialect` bazel target, leading it to take a dependency on `:TorchMLIRConversionUtils` which already depends on `:TorchMLIRTorchDialect`, hence creating a circular dependency.
This commit resolves the same by moving said utilities from `lib/Conversion/Utils/Utils.cpp` to `lib/Dialect/Torch/Utils/Utils.cpp`. Please LMK if there's a better way to fix this and I will update the code.
This commit also adds the required targets to support building the new conversions from Torch to ML Program dialect that was introduced in f416953600.
Bazel build GHA triggered manually to verify: https://github.com/sjain-stanford/torch-mlir/actions/runs/3645944517
The current implementation of `DecomposeComplexOps` fails if an op
expected to be decomposed does not get decomposed in the first
iteration of the `createTorchSimplificationPipeline` in
`LowerToBackendContractPass`. However, some graphs require multiple
iterations of `createTorchSimplificationPipeline` to fully propagate
all statically knowable information, such as dtypes and shapes, to the
entire graph, sometimes resulting in the need to run
`DecomposeComplexOps` more than once.
This commit changes `DecomposeComplexOps` to use a greedy algorithm
for pattern application and moves the legalization check of ops to the
`LowerToBackendContractPass` to allow for the `DecomposeComplexOps` to
run more than once.
- Support for non-prefixed accessors has been removed. See:
https://reviews.llvm.org/D136727
- Rename `operands` to `methodOperands` in `prim.CallMethod` since the
name `operands` overlaps with a builtin method name. See:
https://reviews.llvm.org/D136727
- Add passes in refbackend to lower memref.subview. See:
https://reviews.llvm.org/D136377
- Replace `CopyToValueTensorOps` first in `RewriteViewLikeSubgraph` in
maximize-value-semantics.
The current implementation of the `RewriteViewLikeSubgraph` pass in
maximize-value-semantics creates temporarily invalid IR. In
particular, given a forward slice starting from a
`CopyToNonValueTensorOp` and ending in `CopyToValueTensorOp`s, the
pass first replaces all uses of the `CopyToNonValueTensorOp` with
its operand, which results in all the `CopyToValueTensorOp` users
having their operand have type `!torch.vtensor`, which is invalid.
The correct way to do things is to first replace all the
`CopyToValueTensorOp`s with their operand, and then replace all uses
of the `CopyToNonValueTensorOp` with its operand.
This only started failing now because the generated accessor
`getOperand` for the `CopyToValueTensorOp` now returns a
`TypedValue<NonValueTensorType>`, which has an assert checking that
the value returned is of the expected type.
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Summary of changes:
- Change ShapedType::kDynamicSize -> ShapedType::kDynamic
- llvm::NoneType has been deprecated, change convertScalarToDtype to use llvm::None
This commit replaces the LCG algorithm that was being used by the
`TorchToLinalg` lowering of `AtenUniformOp` to generate random numbers
with the `squares64` algorithm, for the LCG algorithm was producing
tensors that were highly correlated with one another.
Squares64 algorithm: https://arxiv.org/abs/2004.06278
Closes https://github.com/llvm/torch-mlir/issues/1608
Summary of changes:
- Replace call to `MemoryEffectOpInterface::hasNoEffect`
with `isMemoryEffectFree`.
- Make fix for the dynamic dims, since
`kDynamicSize` value changed to
`std::numeric_limits<int64_t>::min()` from `-1` in llvm
- `makeShapeLLVMCompatible` and `makeShapeTorchCompatible`
utilities convert shapes in order to remain consistent
with the Torch and MLIR semantics.
- Update tags
llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
The current implementation sets the `nextSeed` value to `temp & 127`,
which is wrong. The last step of the LCG algorithm for the multiplier
and increment chosen should be `temp % 2^{64} = temp & (1 <<
63)`. However, because we are dealing with i64 values, the modulus
operation happens automatically, so it is not needed.
See Donald Knuth's values for LCG here:
https://en.wikipedia.org/wiki/Linear_congruential_generator
-- This commit fixes a bug in computeReductionType API.
-- The bug pertains to removal of `dim` from the `sizes` array.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
-- This commit adds decompose logic for `aten._softmax` when
`half_to_float` is `True`.
-- An e2e test case will be added once support for half to float conversion for
`aten._softmax` is added upstream.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
This commit fixes the aten.mean and aten.mean.dim op decomposition
for supporting large-sized inputs.
This commit also fixes the formatting for the file stats.py
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
-- aten.upsample_nearest2d.vec op is not present
owing to https://github.com/pytorch/pytorch/pull/85638
-- So this commit adds a lowering on aten.upsample_nearest2d.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
This commit renames the patterns used to match on lists of constant
values to `m_TorchListOfConstant{valueType}s`. This is needed to avoid
ambiguity for when `valueType` has `Optional` in it. In particular, it
makes it clear whether the values in the list are optional or the list
itself is optional.
lib/Dialect/Torch/Utils/Utils.cpp includes TorchOps.h, which, by way of
included header files, refers to both TorchOps.h.inc as well as
TorchTypes.h.inc. However, the build rules do not specify the
dependency of the `TorchMLIRTorchUtils` target on the TableGen generated
header files, causing spurious build errors.
This patch fixes the problem by adding `MLIRTorchOpsIncGen` and
`MLIRTorchTypesIncGen` to the list of dependencies of
`TorchMLIRTorchUtils`.
* build: update llvm tag to 74fb770d
This commit makes the following changes needed to update bump LLVM:
+ replace usages of `tensor::createPadScalarOp`, see https://reviews.llvm.org/D136493
+ Update file checks
The parameter "supportFPInputOnly" of function createPoolingOp() is
supposed to be "supportNonFPInput", which was added to distinguish
between "MaxPool2d" and "AvgPool2d" op in #718
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
This commit makes the following changes needed to update bump LLVM:
- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
This commit removes the `weight` tensor from the inputs of one of the
`linalg.generic` ops generated by the `aten.convolution` linalg
lowering, since the indexed values are not actually used by the body
of the `linalg.generic`. Moreover, in general the `weight` tensor does
not have the same shape as the output tensor of the `linalg.generic`,
so both tensors being indexed by the same indexing maps is wrong.
-- This commit adds e2e support for `aten.Mish` op.
-- `aten.Mish` op is decomposed as following :-
Mish(x) = x * Tanh(Softplus(x))
Signed-off-by: Abhishek Varma <avarma094@gmail.com>
Signed-off-by: Abhishek Varma <avarma094@gmail.com>
This commit adds lowering of `aten.div.int` and `aten.bitwise_or.Tensor`
ops. Both these ops are required in order to support bloom_560m model.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit updates the linalg conversion of `AtenMaxDimOp` to use
`arith.maxf` instead of `arith.select` to calculate the maximum. This
allows better vectorization further downstream, since the operation
can be converted to a simple max reduction when the `indices` result
is not used. See: https://github.com/iree-org/iree/issues/10666.
Summary of changes:
- Updated references to the Arith dialect
(https://reviews.llvm.org/D134762)
- Switched to prefixed accessors for MemRef dialect
(https://reviews.llvm.org/D134995)
- Fixed warnings about signed/unsigned comparisons, ignored return
values, and unused variables
* Fix c10::prim::Constant conversion; Added CAPI for passes; Added passes to base lazy backend
* Update ivalue_importer to use ImportOptions; Added tests for non-value/value tensor types
* Added tests for scalar Constant import; Updated MB::importFunction to use ImportOptions
* Test updates
* Move back module variable name
* Remove RefineTypes from TorchMlirLoweringContext::Build()
* Rename pass; Remove passes from base lazy backend
* Rename pass to VerifyBackendContractPass
* Aligned cmd pass name; Fixed TorchConversion passes registration
The auto-update of the PyTorch version broke the Torch-MLIR build
because it did not update the shape library. Going forward, we should
add the shape library update to the PyTorch version update action.
This commit adds support for TorchToTosa lowering of
`aten.broadcast_to` op for cases:
1.) When the rank of input and output tensor is equal.
2.) When the rank of input tensor is zero.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Summary of changes:
- Renamed OptionalArrayRefParameter since the name conflicts with an
upstream symbol that has a different meaning
(https://reviews.llvm.org/D133819)
- Removed extraneous dependency between TorchMLIRTorchToMhlo and
ChloOps, since the existing dependency on MhloDialect is sufficient
- Fixed code to prevent warnings related to comparisons between signed
and unsigned values