This commit adds the following support to the op `nll_loss_backward`:
- `input` tensor can be rank-1
- `weight` parameter
- `reduction` parameter
- `target`, `grad_output`, `total_weight` can be rank-0
- Checks that input tensors are of the expected type
This commit adds support for multi-dimensional tensors as input to the
`_index_put_impl_` op. The support was to some degree already there,
since `ScatterOp` already supports multi-dimensional tensors. This
commit also adds a bit more error checking to `index_put` and
refactors the code for creating `ScatterOp`s to mimic the way one
would make a `Linalg::GenericOp`.
The issue was in the canonicalizer for torch.aten.ge.int -- in cases
where the operands were swapped, it would miscompile. This issue is
fixed and folding support generalized to `torch.aten.size.int < 0` as
well.
Fixes#716
This commit decomposes different variants of `aten.where.*` op into
`aten.where.Self` op. It covers `aten.where.Scalar`,
`aten.where.ScalarSelf` and `aten.where.ScalarOther` ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.
This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287
Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
that derefines to a UnionType (this also fixes#664).
There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
Effectively, this mode works by compiling op by op as the NN is eagerly executed by PyTorch. Entailed in that compilation is building a representation of the op that can be `torch.jit.script`ed, importing using `ModuleBuilder`, and then executing (e.g., with `RefBackendLinalgOnTensorsBackend`). This mode includes a fallback to conventional PyTorch if anything in the torch-mlir compilation process fails (e.g., unsupported op).
Currently, all e2e tests pass execpt for two that involve an upstream PyTorch bug (https://github.com/pytorch/pytorch/issues/74400).
High priority next steps:
1. A compile cache in order to speed up reruns of the same NN.
2. Integration with IREE (though not in this repo).
3. Integration with `torch.distributed`.
- This commit adds decomposition of `aten.dropout` op. It also covers the
training mode of the same op.
- It also adds lowering of `aten.sub.float` op.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
The `assemblyFormat` stuff (which generates unrolled, per-op C++ code)
was taking up a lot of compile time, and all the ops are essentially
printed with the same logic. So this PR makes them all call the same
helper function. This is done by using
`let hasCustomAssemblyFormat = 1` and then implementing `FooOp::parse`
and `FooOp::print`.
Additionally, the `Generated*Ops.td` files are all collapsed into just
`GeneratedTorchOps.td` (there is no reason to have the files separate,
since the files are very large anyway so one is always having to search
within them -- editors don't care that the file to search is now a bit
bigger :) ).
This reduces TorchOpsODSGenerated.cpp compile time (which is now
GeneratedTorchOps.cpp) from 39 to 31 seconds on my machine. This is
actually less than I expected, but this PR is an overall cleanup to the
code anyway. The next step will be to introduce (better) functionality
upstream for sharding the TorchOps.cpp.inc file, so that we can truly
parallelize the O(#ops) costs. This is also necessary, because after
this PR, TorchDialect.cpp is now the slowest file to compile, due to the
`addOperations<... all the ops ...>` call, which needs to be shareded
too.
This commit adds the op `ValsemVariantAtenCopyOp` that represents
`AtenCopy_Op` without the underscore. This is needed to make sure
that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.
This commit also adds the lowering of `ValsemVariantAtenCopyOp`.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit fixes the 2nd and 3rd return types of the `aten.native_layer_norm`.
Previously the mean and rSTD were returned with reduction dims removed.
This commit fixes this and keeps the reduction dims of the results.
Signed-Off-By: Prateek Gupta <prateek@nord-labs.com>
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.
This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.
This commit also updates the `torch.bincount` op test cases.
The term "pseudo" is very vague and was getting confusing (I felt I had
to explain it in every comment referencing it). Instead, rework the
"pseudo" ops to instead be named:
- MLIR Syntax: `torch.valsem.*`
- C++ / ODS: `ValsemVariant*Op`
This makes it clear what the concept is, and avoids confusion with other
things that might be called "pseudo", since these are very specific and
should be 100% consistently named w.r.t. the non-valsem-variant ops that
they correspond to.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.
This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.
Recommended review order:
1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
`canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.
Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).
Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
This pass is added to lower ops, which can not be lowered
via the TorchToLinalg pass, such as `torch.bincount` op.
This pass also uses torch-mlir's TMTensor Dialect to lower the
complex ops.
Also add torch.bincount op lowering with the help of TMTensor dialect
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
- This commit adds E2E support for `aten.rand_like` and
`aten.bernoulli_.Tensor` ops.
- The `aten.bernoulli(x)` was implemented as:
`aten.bernoulli(x) = rand_like(x) < 0.5`, assuming 0.5 as default
probability, whereas according to the pytorch documentation:
https://pytorch.org/docs/stable/generated/torch.bernoulli.html#torch.bernoulli
the input x in `aten.bernoulli(x)` is itself a tensor containing
probabilities to be used for drawing the binary random number.
- So this commit fixes the `aten.bernoulli(x)` implementation as:
`aten.bernoulli(x) = rand_like(x) < x`.
- It also fixes the case where the input to `aten.bernoulli_.float` is
an integer tensor. In this case the input must be casted to float type
before passing it as operand to `aten.rand_like` op.
`aten.bernoulli_.float(x, p) = rand_like(float(x)) < p`.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
The pass is mostly borrowed from the BufferizeAnyLinalgOp pass in mlir
upstream with some minor changes. At a high level, it's a naive partial
bufferization pass which allocate new buffers for all the output
tensors. The initial value of an output buffer is copied from the
original buffer if there are uses of the original value.
One difference from linalg bufferization pass is the way to tell if
the loop body uses the init value of output operand. For TMTensor ops,
it differs from op to op because the payload region doesn't represent
the entire loop body.
This commit adds the op `PseudoAtenFillScalarOp` that represents
`AtenFill_ScalarOp` without the underscore. The approach is the same
as in commit dd998fa4d4.
Adding this op allows for a simpler and more consistent version of the
`empty` and `empty_like` op e2e tests.
- This commit adds lowering of `aten.le.Scalar` and `aten.ge.Scalar` ops
as a part of `convert-torch-to-linalg` pass.
- It also creates a new test script `elementwise_comparison.py` for all
element-wise comparison ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
- This commit adds lowering of `aten.Bool.Tensor` and
`aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
`aten.Float.Tensor` op, it folds to the scalar number.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Prior to this commit, importing a `prim::Constant` node with list type would result in an error since it was not supported. `ivalue_importer::importIValue` was modified to return the MlirValue corresponding to the root so its parent operation could be extracted.
- This commit adds support for `aten.native_batch_norm` operation.
- The current implementation only supports inference mode of
`aten.native_batch_norm` op.
Signed-Off-By: Gaurav Shukla <gaurav@nod-labs.com>
The lowering of aten::nll_loss_backward op has been added
from torch to linalg dialect. The changes has been made as
a part of -torch-convert-to-linalg pass.
Signed-off-by: Prashant Kumar prashant@nod-labs.com
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
The added e2e maxpool testcase from #545 was not getting a static shape
due to an unfolded prim.If when RefineTypes was called. This was because
of unfolded torch.iaten.__is__ and torch.prim.unchecked_cast operators
with torch.derefine operands.
This commit adds the aten ops which do not require random number
support to aten dialect. This commit also adds some of the missing
torch types.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
Note that to enable folding of the code coming from an example
like the ConstantPad2dStaticModule e2e test, support for other
operations had to be added/improved:
- aten::neg.int
- aten::eq.float
- aten::eq.str
- prim::Uninitialized
This commit adds lowering of `aten.threshold` op
This commit adds lowering of `aten.threshold_backward` op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
- This commit adds E2E support for `aten.ones_like` and
`aten.zeros_like` ops.
- Adds support for non-None `dtype` argument of `aten.empty_like` op.
- All the unit test cases related to constant tensor allocation like ops
are moved to a different file named `constant_alloc.py`.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds lowering of `aten.arange.start_step` op.
This commit decomposes `aten.arange` and `aten.arange.start` into
`aten.arange.start_step` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
- It folds `aten.to.dtype` when the input tensor type and result type
are exactly same.
- It folds `aten.view` when the rank of both the input tensor type and
result type is unity.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
- Added E2E support for `aten.eq.Tensor` and `aten.lt.Tensor` ops. Both
the operands are expected to be of the same type, i.e., type promotion
is not addressed as a part of this commit.
- Added E2E support for `aten.eq.Scalar` and `aten.lt.Scalar` ops.
Tensor operand type to Scalar operand type promotion has not been
handled in this commit.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit fixes the naming of results in the torch ODS generator
when dealing with multiple results. In particular, this commit appends
an index to each result name to guarantee that they are all unique.
This patch adds the where, gt, bucketize and reshape
ops to the Torch dialect. These ops are present in the histogram
calibration module.
TEST: Successfully lowers ops to Torch dialect in histogram module.
This commit adds support for aten.native_layer_norm operation. Here
the previous code for aten.layer_norm is tweaked a little bit to
accomodate both mean and variance values alongwith the layer norm
value. This commit also adds decomposition of aten.layer_norm into
aten.native_layer_norm, which was previously getting lowered directly
to linalg.
Signed-Off-By: Prateek Gupta<prateek@nod-labs.com>
This commit adds lowering of `aten.squeeze.dim` op into
`linalg.TensorCollapseShape` op. Here, the dim(th) dimension of the
input tensor is not supposed to be dynamic.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds lowering of `aten.gt.Scalar` and `aten.where.self` as a
part of element-wise ops lowering.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Support for passing memref of bool types as a function argument
and return is added in ref-backend.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
The op lowering has been added as a part of `torch-lower-to-linalg`
pass. This takes care of ignore_index but the weight and reduction
operand is still to be accounted for.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
This commit adds lowering of `aten.Squeeze` op into
`linalg.TensorCollapseShape` op. The size 1 dynamic dimensions are not
handled as a part of this commit.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This is to fold the common pattern from Bert inference like:
```
%111 = torch.prim.NumToTensor.Scalar %110 : !torch.int ->
!torch.vtensor<[],si64>
%112 = torch.aten.Int.Tensor %111 : !torch.vtensor<[],si64> ->
!torch.int
```
aten.log_softmax_back_data op lowering and required
tests has been added. Some NFC have also been added.
Signed-off-by: Prashant Kumar prashant@nod-labs.com
This commit adds lowering of `aten.mul.Scalar` and also adds
decomposition of `aten.addmm` to `aten.mul.Scalar`, `aten.add.Tensor`
and `aten.mm` ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds new operation `aten.gelu_backward` in the aten
dialect and adds lowering of this operation from aten to linalg.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
This change is to unblock the work of some backprop ops returning more
than one tensors. We will need to think of a more scalable approach
in the future if more flexible return types combinations are needed.
This is to facilitate scalar type conversion in the TorchToLinalg. As
part of adding the helper, this PR also:
- Updated `AtenAddTensorOp`, `AtenSubTensorOp` to use the helpers to
support more type variants.
- Added e2e type promotion testing.
- Added i32 memref return/arg type to support e2e testing.
Support for returning elemental types. Previously, only
memref types as returning types was supported. All the hacky ways
to write tests which return elemental types should be taken care of.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
The lowering of `aten.Int.Tensor` op has been added.
The changes has been made as a part of `convert-torch-to-linalg` pass.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
- Split out TOSA in the CI.
- Add summary of unexpected test outcomes. This works better when there
are many XFAIL'ing tests, as it only prints out the error_str on
FAIL, not on XFAIL. Example here:
https://gist.github.com/silvasean/c7886ec7b3d35c21563cb09f7c3407da
Part of #380
Also
- BoolType is not considered as Scalar
- e2e framework fixes for nan handling
- `tu.rand(..., low=, high=)` support
- delete unused variable (fix warning)
- Add IouOfModule from #380 to e2e test suite (this is a common
calculation in vision models)
Your branch is ahead of 'origin/main' by 1 commit.
Lowering of `aten.matmul` op is added from torch to linalg dialect.
The different cases correspond to
https://pytorch.org/docs/stable/generated/torch.matmul.html.
TODO: Broadcasting in case of batch-matmul is yet to be taken care of.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
* Print more exception info on error during test execution
* Fix formatting
* Add aten::gelu lowering
Co-authored-by: Boian Petkantchin <boian@nod-labs.com>
* Also adds a requirements.txt and updates docs to reference it versus stringy pip install.
* Adds doc with instructions on creating a wheel.
Fixes#370
* Picks up Python configure changes (was pinned to a bad intermediate commit).
* Uses the new mlir_configure_python_dev_packages() to ensure CMake python is found consistently.
* Fixes the JIT importer to build as a MODULE vs SHARED (needed for linking to Python as a module, per config changes).
* Adds some notes to the README to help folks build a smaller set focused just on this project.
- Added a DecomposeComplexOps pass to decompose complex torchOps.
- Refactored `visitAtenArgmaxOp` and `visitAtenAnyDimOp` to
`visitReductionAlongDimIntOp`.
- Moved some helper functions into
torch-mlir/Dialect/Torch/Utils/Utils.h to be shared by multiple files.
- Added support for f64 tensor as argument and return types.
- Move `run_pipeline_with_repro_report` to a more common place, and use it
consistently
- Attach a `torch.debug_module_name` to the enclosing `builtin.module`
op to allow for self-contained error reporting (not needing to pass
the names around.
- Remove redundant error reporting in linalg_on_tensors_backend.py and
tosa_backend.py (their respective backend abstract base classes now
take care of the error reports themselves)
- Save off original value of sys.stderr, rather than always resetting to
`sys.__stderr__`. This is just more hygienic, and allows nesting if
desired.
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```
The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.
Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
`abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.
The standard file comment is now:
```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```
See `LICENSE` in the project root for the terms of both licenses.
Implement the `lazytensor` python package for converting
lazy computations captured by the Lazy Tensor Core into MLIR.
This PR also fixes a few things with `torchfx` and its example
This leaves no real code outside torch-mlir.
This also renames the "npcomp backend contract" to "linalg on tensors
backend contract" as the name of the abstraction layer that RefBackend
(IREE too) accepts.
A few remain in examples/docs that will be naturally be updated in due
time.
This regresses the list support and the general direction of more widely
supported control flow, lists/dicts/globals that we were going for with
the TorchScript path. The idea is that we are deferring that work to
make torch-mlir a very clean standalone thing. We will reboot it,
probably using some of the tools of iree_pydm to make it simpler, and in
a more natural place (such as an iree-torch repo that depends on IREE and
torch-mlir to build a working PyTorch frontend solution for IREE -- it
was really weird that npcomp depended on IREE).
`tools/torchscript_e2e_test.sh` is all green.
This needs a few passes I put into torch-mlir/lib/RefBackend (not to be
confused with `npcomp/lib/RefBackend`, which will soon be deleted).
For the sake of review, since this brings together a lot of things, I
split this into its own commit. I temporarily commented out some "list"
stuff that we are going to remove as part of the torch-mlir refocus.
Fixes https://github.com/llvm/mlir-npcomp/issues/311
The key change is that TorchPlugin is folded into
`torch_mlir.dialects.torch.importer.jit_ir` (it imports the PyTorch
JIT's IR, so that's a good, scoped name for it).
The CMake option `-DTORCH_MLIR_ENABLE_JIT_IR_IMPORTER=OFF` disables it,
which allows building without a PyTorch native dependency.
After this change, there are now just two subdirectories in the
`python_packages` directory in our combined build:
- `npcomp_core` with all the npcomp stuff
- `torch_mlir` with all the `torch-mlir` stuff.
The combined `torch_mlir` build will be packaged for use by `pip`.
There isn't anything super useful for wider use in `npcomp_core` so for
now we aren't going to package that one.
It just contained the e2e testing framework. We now fold it into the
main project to reduce complexity.
- `frontends/pytorch/python/` -> `python/torch_support`
- `frontends/pytorch/e2e_testing -> e2e_testing`
- `frontends/pytorch/examples -> examples`
- `frontends/pytorch/test` -> `python/test`
- `torch_mlir_torchscript` python module -> `npcomp_torchscript`
- `torch_mlir_torchscript_e2e_test_configs` python module ->
`npcomp_torchscript_e2e_test_configs`
This also changes the license of a handful of files from the
"pytorch-style" license to the regular LLVM/npcomp license. The only
people who committed to those files were myself and Yi.
This moves the bulk of the Python code (including the Torch interop)
from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also
required reconciling a bunch of other Python-related stuff, like the
`torch` dialects.
As I did this, it was simpler to just remove all the old numpy/basicpy
stuff because we were going to delete it anyway and it was faster than
debugging an intermediate state that would only last O(days) anyway.
torch-mlir has two top-level python packages (built into the
`python_packages` directory):
- `torch_mlir_dialects`: `torch` dialect Python bindings (does not
depend on PyTorch). This also involves building the aggregate CAPI for
`torch-mlir`.
- `torch_mlir`: bindings to the part of the code that links against
PyTorch (or C++ code that transitively does).
Additionally, there remain two more Python packages in npcomp (but
outside `torch-mlir`):
- `npcomp_torch`: Contains the e2e test framework and testing configs
that plug into RefBackend and IREE.
- `npcomp_core`: Contains the low-level interfaces to RefBackend and
IREE that `npcomp_torch` uses, along with its own
`MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR
python bindings. (all other functionality has been stripped out)
After all the basicpy/numpy deletions, the `npcomp` C++ code is now very
tiny. It basically just contains RefBackend and the `TorchConversion`
dialect/passes (e.g. `TorchToLinalg.cpp`).
Correspondingly, there are now 4 main testing targets paralleling the
Python layering (which is reflective of the deeper underlying dependency
structure)
- `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code.
- `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g.
TorchScript import)
- `check-frontends-pytorch`: Checks the little code we have in
`frontends/pytorch` -- mainly things related to the e2e framework
itself.
- `check-npcomp`: Checks the pure MLIR C++ code inside npcomp.
There is a target `check-npcomp-all` that runs all of them.
The `torch-mlir/build_standalone.sh` script does a standalone build of
`torch-mlir`.
The e2e tests (`tools/torchscript_e2e_test.sh`) are working too.
The update_torch_ods script now lives in
`torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone
build.
This change also required a fix upstream related to cross-shlib Python
dependencies, so we also update llvm-project to
8dca953dd39c0cd8c80decbeb38753f58a4de580 to get
https://reviews.llvm.org/D109776 (no other fixes were needed for the
integrate, thankfully).
This completes most of the large source code changes. Next will be
bringing the CI/packaging/examples back to life.
This creates the `external/torch-mlir` directory as an
LLVM_EXTERNAL_PROJECTS-compatible project (analogous to
`iree-dialects`) and completes movement/rename of all pure MLIR C/C++
compiler code into there. The next step will be to move all the Python
code / code that links/includes PyTorch C++ code (which currently lives
in `frontends/pytorch`) into a subdirectory here.
I call this "earthmoving" because it is mostly mechanical changes and
renames. As a quick summary (we can change this down the road easily)
- C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch`
- CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet`
- preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_`
- CMake `NPCOMPFoo -> TorchMLIRFoo`
The goal of this is to create a standalone project creating a center of
mass for entry into the MLIR ecosystem from PyTorch, suitable in scope
for eventual inclusion/ownership in PyTorch. The idea is that
`external/torch-mlir` will some day be pulled out into its own
repository, and then npcomp will simply pull it in as a submodule.
Layering-wise, what lives in `torch-mlir` lowers code from PyTorch
(currently TorchScript, but TorchFX or pytorch/xla-style tracing are
possible extensions) down to what we have been calling the "Torch
backend contract" which is cleaned up IR (inlining, simplifcation,
conversion to value tensors, ...) entirely in the `torch` dialect. This
is the branching off point for further lowering, of which npcomp takes
one opinion (outside `torch-mlir` of course!), namely the
`TorchConversion` dialect/transforms which lower to IR suitable for IREE
and other linalg-on-tensors based lower-level compilers.
Summary of changes:
- move `{include,lib,test}/Dialect/Torch` into `torch-mlir`
- move relevant parts of CAPI into `torch-mlir`.
- leave a few things related to the `torch-mlir` Python build commented
out, which should be resolved in a subsequent change.