This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.
This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
Rename BlockAndValueMapping to IRMapping
Moved PrimTupleConstructOp type validation to its own verifier as the
tablegen version does not work for a combination of variadic input and
non-variadic output.
One of the potential values for a `torch_upstream::ScalarType` is
`Undefined`. This means that conversion of a `ScalarType` to another
type is a computation that can fail. To enforce handling of the
failure case, this commit makes the two helper functions that convert
`ScalarType`s into other types return `failure()` when the
`ScalarType` is `Undefined`.
This reverts commit eaab9be207, since it
is causing the post-merge CI tests to fail, causing subsequent PRs to be
blocked. Specifically, the tests
`ElementwiseAtenLogicalAndOpPromoteBroadcastModule_basic` and
`ElementwiseAtenLogicalXorOpPromoteBroadcastModule_basic` fail because
the oracle does not match the computed result. This patch reverts the
commit to make the post-merge builds green again.
Summary of changes:
- LLVM now includes <optional> instead of "llvm/ADT/Optional.h" in most
(although not all) places
(https://reviews.llvm.org/rG541ef3d61e9341cd38420c0dbca9250c4d0ea04c).
This patch replaces the affected instances of `llvm::Optional` with
`std::optional`.
- In the usages of llvm::Optional that remain, llvm::Optional::value()
is deprecated, so this patch replaces them with a dereference.
In order to verify if a given IR satisfies the backend contract, the
verifier needs to know if decompositions took place, and if so, which
ops were decomposed and which were not.
This commit adds two arguments to `verifyBackendContractPass` to
specify if decompositions took place and which ops to consider backend
legal, similar to the arguments of `LowerToBackendContractPass`.
Summary of changes:
- Replace `llvm::None` with `std::nullopt`, since the former is deprecated
(https://reviews.llvm.org/D139763)
- Use setter for symbol visibility instead of passing string attribute when
creating FuncOp
* [custom op] Generalize shape library logic to work with dtypes
This commit generalizes the shape library logic, so that dtype rules
for ops can also be expressed using the same mechanism. In other
words, each op can now have a shape function and a dtype function
specified in Python that is imported during lowering to calculate the
shapes and dtypes throught a program. For more information about how
to specify a dtype function, see the updated
`docs/adding_a_shape_and_dtype_function.md`.
For those not familiar with how the shape library works, the file
`docs/calculations_lib.md` provides an overview.
Currently `getTensorRank` returns -1 if it was unable to get the rank
of the tensor. However, not every use in the codebase was checking the
return value, and in some cases, the return value was casted to
unsigned leading to some infinte loops when an unranked tensor reached
a decomposition.
This commit changes the return of `getTensorRank` to
`Optional<unsigned>` to make it clear to the user that the function
can fail.
This commit also changes a couple of for loops that iterate a vector
in reverse order that can potentially become infinite loops into
range-based for loops.
A circular dependency was introduced in e7edcc62fd.
Specifically, the `makeShapeLLVMCompatible` and `makeShapeTorchCompatible` utilities were being called from `lib/Dialect/Torch/IR/TorchTypes.cpp` and `lib/Dialect/Torch/IR/TorchOps.cpp` defined under the `:TorchMLIRTorchDialect` bazel target, leading it to take a dependency on `:TorchMLIRConversionUtils` which already depends on `:TorchMLIRTorchDialect`, hence creating a circular dependency.
This commit resolves the same by moving said utilities from `lib/Conversion/Utils/Utils.cpp` to `lib/Dialect/Torch/Utils/Utils.cpp`. Please LMK if there's a better way to fix this and I will update the code.
This commit also adds the required targets to support building the new conversions from Torch to ML Program dialect that was introduced in f416953600.
Bazel build GHA triggered manually to verify: https://github.com/sjain-stanford/torch-mlir/actions/runs/3645944517
- Support for non-prefixed accessors has been removed. See:
https://reviews.llvm.org/D136727
- Rename `operands` to `methodOperands` in `prim.CallMethod` since the
name `operands` overlaps with a builtin method name. See:
https://reviews.llvm.org/D136727
- Add passes in refbackend to lower memref.subview. See:
https://reviews.llvm.org/D136377
- Replace `CopyToValueTensorOps` first in `RewriteViewLikeSubgraph` in
maximize-value-semantics.
The current implementation of the `RewriteViewLikeSubgraph` pass in
maximize-value-semantics creates temporarily invalid IR. In
particular, given a forward slice starting from a
`CopyToNonValueTensorOp` and ending in `CopyToValueTensorOp`s, the
pass first replaces all uses of the `CopyToNonValueTensorOp` with
its operand, which results in all the `CopyToValueTensorOp` users
having their operand have type `!torch.vtensor`, which is invalid.
The correct way to do things is to first replace all the
`CopyToValueTensorOp`s with their operand, and then replace all uses
of the `CopyToNonValueTensorOp` with its operand.
This only started failing now because the generated accessor
`getOperand` for the `CopyToValueTensorOp` now returns a
`TypedValue<NonValueTensorType>`, which has an assert checking that
the value returned is of the expected type.
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Summary of changes:
- Change ShapedType::kDynamicSize -> ShapedType::kDynamic
- llvm::NoneType has been deprecated, change convertScalarToDtype to use llvm::None
Summary of changes:
- Replace call to `MemoryEffectOpInterface::hasNoEffect`
with `isMemoryEffectFree`.
- Make fix for the dynamic dims, since
`kDynamicSize` value changed to
`std::numeric_limits<int64_t>::min()` from `-1` in llvm
- `makeShapeLLVMCompatible` and `makeShapeTorchCompatible`
utilities convert shapes in order to remain consistent
with the Torch and MLIR semantics.
- Update tags
llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
-- aten.upsample_nearest2d.vec op is not present
owing to https://github.com/pytorch/pytorch/pull/85638
-- So this commit adds a lowering on aten.upsample_nearest2d.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
This commit renames the patterns used to match on lists of constant
values to `m_TorchListOfConstant{valueType}s`. This is needed to avoid
ambiguity for when `valueType` has `Optional` in it. In particular, it
makes it clear whether the values in the list are optional or the list
itself is optional.
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
This commit makes the following changes needed to update bump LLVM:
- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
-- This commit adds e2e support for `aten.Mish` op.
-- `aten.Mish` op is decomposed as following :-
Mish(x) = x * Tanh(Softplus(x))
Signed-off-by: Abhishek Varma <avarma094@gmail.com>
Signed-off-by: Abhishek Varma <avarma094@gmail.com>
This commit adds lowering of `aten.div.int` and `aten.bitwise_or.Tensor`
ops. Both these ops are required in order to support bloom_560m model.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
* Fix c10::prim::Constant conversion; Added CAPI for passes; Added passes to base lazy backend
* Update ivalue_importer to use ImportOptions; Added tests for non-value/value tensor types
* Added tests for scalar Constant import; Updated MB::importFunction to use ImportOptions
* Test updates
* Move back module variable name
* Remove RefineTypes from TorchMlirLoweringContext::Build()
* Rename pass; Remove passes from base lazy backend
* Rename pass to VerifyBackendContractPass
* Aligned cmd pass name; Fixed TorchConversion passes registration
This commit adds support for TorchToTosa lowering of
`aten.broadcast_to` op for cases:
1.) When the rank of input and output tensor is equal.
2.) When the rank of input tensor is zero.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Summary of changes:
- Renamed OptionalArrayRefParameter since the name conflicts with an
upstream symbol that has a different meaning
(https://reviews.llvm.org/D133819)
- Removed extraneous dependency between TorchMLIRTorchToMhlo and
ChloOps, since the existing dependency on MhloDialect is sufficient
- Fixed code to prevent warnings related to comparisons between signed
and unsigned values
Strength the shape inference for aten.arange-like op by
1. registering aten.sub and aten.ceil.Scalar op and design folders for them.
2. register a new constant-like op: Torch::ConstantNumberOp and design canonicalizer for it.
This PR adds an `AllowedInModuleInitializer` trait to keep track of ops that are permitted in the module initializer. We have a handful of such ops that are produced by the IValue importer, and so this change avoids maintaining a list of ops in `TorchOps.cpp` that could lead to spurious merge conflicts, and help us integrate torch-mlir in our downstream compiler better. Please let me know if you'd prefer a better name for the trait itself. Feedback is welcome!
Summary of changes:
- Updated emitAccessorPrefix since the default value has changed
(https://reviews.llvm.org/D133179)
- Updated RefineTypes pass since Lattice::isUninitialized() is removed
(https://reviews.llvm.org/D132800)
- Updated MHLO tag so that it builds with the updated LLVM tag
- Disabled two tests that cause segfaults in the TOSA backend (see Issue
#1361)
* Add aten.frobenius_norm.dim op and init its conversion pattern to linalg and MHLO,
* run symbolic-shape-optimization before hlo-legalize-to-linalg to fit more mhlo e2e tests.
We were already hitting many cases where backends different in terms of
the legal ops that they wanted. This caused unnecessary coupling between
the backends. Examples:
- https://github.com/llvm/torch-mlir/pull/1161
- https://github.com/llvm/torch-mlir/pull/862
This PR centralizes all compilation to go through `torch_mlir.compile`
so that we can keep the logic centralized there. We should move these
lists closer to each backend. Especially cases like
https://github.com/llvm/torch-mlir/pull/862 where blocking a
decomposition is necessary to avoid a crash emphasize that the set of
decompositions is tightly coupled to the backend, and should be
"controlled by the backend" and not something arbitrarily tweakable.
Also:
- Fix a small bug in the way we passed through the backendLegalOps
option.
- Add better error messages in `torch_mlir.compile` for import errors.
This is a first step towards formalizing the set of ops in our backend
contract. The goal is to eventually formalize `torch` dialect ops into 3
categories:
1. Legal in backend contract
2. Illegal in backend contract
3. Conditionally legal in backend contract
The "conditionally legal" set are the ops that we can optionally
decompose for backends.
This patch adds relevant pass options for this throughout the compiler,
in preparation for a new set of traits which will formalize this
classification.
This introduces a new pass LowerToBackendContract (better name very
welcome) which performs the bulk of the simplifications that we do,
such as
- shape refinement
- dtype refinement
- maximizing value semantics
- inlining global slots
- decomposing complex ops
The key difference from before is that it iterates the set of
transformations, which can help to break a number of "catch-22" issues
where one simplification depends on another, the latest example being
here:
https://github.com/llvm/torch-mlir/issues/1131
This also exposed that RefineTypes was sometimes crashing/asserting for
certain inputs. This commit hardens it a bit.
Summary of changes:
- Switch to C++17 (similar to https://reviews.llvm.org/D131348)
- Update MHLO to build with LLVM commit hash 061e0189
- Replace deprecated `hasValue()` and `getValue()` with `has_value()`
and `value()` respectively (https://reviews.llvm.org/D131349)
- Use `TypedAttr` (https://reviews.llvm.org/D130092)
- Use updated assembly format of `mhlo.compare` op (commit
d03ef01e70fbf9afd0fa1976fbb7ed31838929b3 in MHLO repo)
Rather than a per-global-slot initializer region, we now have one for
the whole module. For example, it might look like this:
```
torch.global_slot "private" @tensor : !torch.tensor
torch.global_slot "private" @list : !torch.list<tensor>
torch.global_slot.module_initializer {
%0 = torch.tensor.literal(dense<0.0> : tensor<f32>) : !torch.tensor
%1 = torch.prim.ListConstruct %0 : (!torch.tensor) -> !torch.list<tensor>
torch.initialize.global_slots [
@tensor(%0 : !torch.tensor)
@list(%1 : !torch.list<tensor>)
]
}
```
This new structure allows GlobalizeObjectGraph to create the initializer in a
much simpler way, avoiding the need to reason about whether different slots
alias each other. Reasoning about whether slots alias each other now is the
responsibility of InlineGlobalSlots, which has to do a much more complicated
analysis, implemented using MLIR's dataflow analysis framework.
Recommended review order:
- Check out the new IR constructs in the .mlir files of various passes
- Op definitions (*.td)
- Changes to GlobalizeObjectGraph pass.
- InlineGlobalSlots pass (~total rewrite)
- Misc changes:
- Moving torchMlirAdjustStaticInformation for sharing with C++ code.
- EraseModuleInitializer pass
To make this a bit nicer, it would be good to have a `torch.module` op
with an initializer region attached. That would be more invasive though.
This change has highlighted certain aspects of our project layering
which are worth calling out. None of our backends can handle global
slots, so we enforce that there are no global slots before backend
lowering. At an earlier stage in the project, we had aspirations of
transparently handling mutable global state and such, but for reasons
described below, that is no longer a goal. So really global slots should
be seen as a progressive lowering step as part of inlining all the
IValue's in the original program (GlobalizeObjectGraph is also one such
step).
Over time, with insights from work like IREE-JAX, it has become clear
that there isn't a reliable programming model we can compile for users
where we just transparently handle mutable global state (and some other
things, like lists and dictionaries). There is a need for an "outer
program" that orchestrates more restricted subroutines of the kind we
can handle in our compile flow here. The benefit of that is that it
decouples considerations like shapes, dtypes, etc. from the program
constructs used in the outer program. As long as the outer program can
efficiently invoke (pipelining/async/etc.) high-performance
data-parallel numerical subroutines of the kind we compile in our flow
here, then there is a complete programming model. This is also
consistent with the direction of upstream PyTorch which is becoming more
tracing-based (which inherently loses a lot of program structure, which
then has to be applied back with an "outer program" orchestrating the
traced subroutines).