Commit Graph

515 Commits (105241915668c15f5b8eab216c103eb501220552)

Author SHA1 Message Date
gpetters94 fa0b24a73c
Rename optional list types (#643) 2022-04-07 18:15:51 -04:00
Prashant Kumar 1d5b5a89e8 [LINALG] Add torch.layout information
torch.layout information has been added.
2022-04-07 20:47:49 +05:30
Ramiro Leal-Cavazos 51d4d55f8a
Add support for multi-dim input to `index_put_impl` (#722)
This commit adds support for multi-dimensional tensors as input to the
`_index_put_impl_` op. The support was to some degree already there,
since `ScatterOp` already supports multi-dimensional tensors. This
commit also adds a bit more error checking to `index_put` and
refactors the code for creating `ScatterOp`s to mimic the way one
would make a `Linalg::GenericOp`.
2022-03-31 09:27:21 -07:00
Gaurav Shukla 969785d1b6 [LINALG] Add E2E support for `aten.where.[Scalar|ScalarSelf|ScalarOther]` ops
This commit decomposes different variants of `aten.where.*` op into
`aten.where.Self` op. It covers `aten.where.Scalar`,
`aten.where.ScalarSelf` and `aten.where.ScalarOther` ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-30 20:36:48 +05:30
Vivek Khandelwal 2597c481f6 [MLIR][TORCH] Add E2E support for aten.new_empty op
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.

This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-30 13:21:01 +05:30
Sean Silva 140babd952 Add minimal support for Union types.
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287

Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
  along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
  that derefines to a UnionType (this also fixes #664).

There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
2022-03-29 17:45:48 -07:00
Liam Fitzpatrick f2269ced80
Improve list index normalization SimplifyShapeCalculations. (#710)
The reified code to compute the shape of torch.aten.constant_pad_nd
uses negative indices when setting list elements. This was not
converted to a positive offset in one place in SimplifyShapeCalculations
which prevented computation of the static shape.
2022-03-29 22:21:47 +02:00
Maksim Levental 25ba51b2af
This commit decomposes aten._reshape_alias op into aten.view op. (#690) 2022-03-28 23:54:28 -05:00
Gaurav Shukla 02b6d04eb4 [LINALG] Add E2E support for `aten.zero_` op
This commit adds decomposition of `aten.zero_` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-25 12:46:50 +05:30
Gaurav Shukla 7c3ba25238 [LINALG] Add decomposition of `aten.dropout` op
- This commit adds decomposition of `aten.dropout` op. It also covers the
  training mode of the same op.
- It also adds lowering of `aten.sub.float` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-22 13:14:49 +05:30
Sean Silva 729402c3f4 Reduce compilation time for TorchOps.cpp.inc
The `assemblyFormat` stuff (which generates unrolled, per-op C++ code)
was taking up a lot of compile time, and all the ops are essentially
printed with the same logic. So this PR makes them all call the same
helper function. This is done by using
`let hasCustomAssemblyFormat = 1` and then implementing `FooOp::parse`
and `FooOp::print`.

Additionally, the `Generated*Ops.td` files are all collapsed into just
`GeneratedTorchOps.td` (there is no reason to have the files separate,
since the files are very large anyway so one is always having to search
within them -- editors don't care that the file to search is now a bit
bigger :) ).

This reduces TorchOpsODSGenerated.cpp compile time (which is now
GeneratedTorchOps.cpp) from 39 to 31 seconds on my machine. This is
actually less than I expected, but this PR is an overall cleanup to the
code anyway. The next step will be to introduce (better) functionality
upstream for sharding the TorchOps.cpp.inc file, so that we can truly
parallelize the O(#ops) costs. This is also necessary, because after
this PR, TorchDialect.cpp is now the slowest file to compile, due to the
`addOperations<... all the ops ...>` call, which needs to be shareded
too.
2022-03-21 14:42:26 -07:00
Vivek Khandelwal 5b9bdfaf3f [MLIR][TORCH] Add E2E support for aten._to_copy op
This commit decomposes `aten._to_copy` op into
`valsem.aten.copy` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 19:12:37 +05:30
Vivek Khandelwal 13383b03b8 [MLIR][TORCH] Add value tensor variant to aten::copy_ op
This commit adds the op `ValsemVariantAtenCopyOp` that represents
`AtenCopy_Op` without the underscore. This is needed to make sure
that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenCopyOp`.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 19:12:37 +05:30
Vigilans 63fb1e5aad Bump LLVM at 8361c5da30588d3d4a48eae648f53be1feb5cfad 2022-03-18 13:16:14 -04:00
Sean Silva 3b66b4925a Make TorchOps.cpp faster to iterate on.
The ODS-generated code included via the `TorchOps.cpp.inc` file takes a
very long time to compile. This PR isolates it into its own file so that
the build system can cache it.

This PR creates a new file `TorchOpsODSGenerated.cpp` just to include
the `TorchOps.cpp.inc` file. Doing so required moving to the "new" way
to define verifiers, since the static `verify` free functions in
TorchOps.cpp weren't accessible from the .inc file after it was moved to
`TorchOpsODSGenerated.cpp`.

On my machine, this drops the build time of TorchOps.cpp (such as when
iterating on a canonicalizer) from >40 seconds to <10 seconds.
10 seconds still isn't great though, but at least it isn't "go get a
coffee" type of waiting.
2022-03-16 09:33:12 -07:00
Vivek Khandelwal 3d95c3d6c9 [MLIR][TORCH] Add value tensor variant to aten::_index_put_impl_
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.

This commit also updates the `torch.bincount` op test cases.
2022-03-16 22:02:02 +05:30
Ramiro Leal-Cavazos 0bcc6d1075
Add maximize-value-semantics support for multiple non-value tensor inputs (#659)
This commit adds value semantics support for ops such as
`aten.view_as` and `aten.expand_as` that take two non-value 
tensors as input.
2022-03-15 18:13:45 -07:00
Sean Silva 92da4988f0 Improve "pseudo" op terminology.
The term "pseudo" is very vague and was getting confusing (I felt I had
to explain it in every comment referencing it). Instead, rework the
"pseudo" ops to instead be named:

- MLIR Syntax: `torch.valsem.*`
- C++ / ODS: `ValsemVariant*Op`

This makes it clear what the concept is, and avoids confusion with other
things that might be called "pseudo", since these are very specific and
should be 100% consistently named w.r.t. the non-valsem-variant ops that
they correspond to.
2022-03-15 17:57:52 -07:00
Sean Silva 7ea50a537a Avoid `using` the `torch_upstream` namespace.
This is code that we always want to treat as "foreign" and not get too
comfortable using in many functions. One way to accomplish that is to
make it a bit clunkier to use.

Also, fix Utils.cpp to match the LLVM/MLIR coding conventions (don't
define functions inside namespaces -- prefer `using` and explicit
qualification).
2022-03-15 17:24:17 -07:00
Sean Silva 84a9693006 Elide `!torch.` prefix in nested dialect types.
This leads to much more succinct types in many cases:

```
!torch.list<!torch.int>
!torch.list<int>

!torch.tuple<!torch.list<!torch.int>, !torch.list<!torch.int>>
!torch.tuple<list<int>, list<int>>

!torch.optional<!torch.list<!torch.int>>
!torch.optional<list<int>>

!torch.list<list<list<tensor>>>
!torch.list<!torch.list<!torch.list<!torch.tensor>>>
```

I would like to take this further and allow omitting the `!torch.`
prefix in all cases, but that's harder -- for example, we currently use
`FuncOp` for functions, and so I don't think we can customize the
printing there. It seems like it will be a longer road to getting that
level of customization.
2022-03-15 17:24:08 -07:00
Sean Silva a5fe0cf063 Introduce new shape library design.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.

This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.

Recommended review order:

1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
   `canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.

Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).

Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
2022-03-15 12:41:58 -07:00
Prateek Gupta 3d9ba5e525 [MLIR][TORCH] Add E2E support for aten.erf op.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2022-03-09 22:22:03 +05:30
Vivek Khandelwal 1a2a9e066f [MLIR][TORCH] Add TorchToTMTensor pass
This pass is added to lower ops, which can not be lowered
via the TorchToLinalg pass, such as `torch.bincount` op.
This pass also uses torch-mlir's TMTensor Dialect to lower the
complex ops.

Also add torch.bincount op lowering with the help of TMTensor dialect

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-08 22:52:34 +05:30
Vivek Khandelwal b2952b12dd [MLIR][TORCH] Move common helper functions to Utils.cpp
This commit moves the helper function which are common across
different torch-mlir conversion passes into a common directory
Utils.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-08 22:52:34 +05:30
Gaurav Shukla e57d3f9774 [LINALG] Fix `aten.bernoulli` op lowering
- This commit adds E2E support for `aten.rand_like` and
  `aten.bernoulli_.Tensor` ops.
- The `aten.bernoulli(x)` was implemented as:
  `aten.bernoulli(x) = rand_like(x) < 0.5`, assuming 0.5 as default
  probability, whereas according to the pytorch documentation:
  https://pytorch.org/docs/stable/generated/torch.bernoulli.html#torch.bernoulli
  the input x in `aten.bernoulli(x)` is itself a tensor containing
  probabilities to be used for drawing the binary random number.
- So this commit fixes the `aten.bernoulli(x)` implementation as:
  `aten.bernoulli(x) = rand_like(x) < x`.
- It also fixes the case where the input to `aten.bernoulli_.float` is
  an integer tensor. In this case the input must be casted to float type
  before passing it as operand to `aten.rand_like` op.
  `aten.bernoulli_.float(x, p) = rand_like(float(x)) < p`.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-05 09:38:22 +05:30
Vivek Khandelwal af551bd9cd [MLIR][TORCH] Add E2E support for aten.full_like op
This commit decomposes `aten.full_like` op into `aten.empty_like`
and `aten.fill` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-04 21:58:23 +05:30
Vivek Khandelwal d61ae92eee [MLIR][TORCH] Add E2E support for aten.full op
This commit decomposes `aten.full` op into `aten.empty` and
`aten.fill` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-04 21:58:23 +05:30
Yi Zhang 1d285f0153 Add aten.hardtanh e2e support. 2022-03-02 12:28:06 -05:00
Prashant Kumar 819f29316f Decompose aten.silu op
Decomposition of aten.silu.op is added as silu(x) = x * sigmoid(x).
2022-03-01 23:24:19 +05:30
Vivek Khandelwal ddd45d6068 [MLIR][TORCH] Add E2E support for aten.new_zeros, aten.new_ones op
This commit adds lowering of `aten.new_zeros` and `aten.new_ones` op

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-01 22:09:47 +05:30
Ramiro Leal-Cavazos 1dba4fcbd7
[LINALG] Support for contiguous memory format in `clone` and `empty` (#628)
This commit adds support for the contiguous memory format for the ops
`AtenCloneOp` and `AtenEmptyMemoryFormatOp`.
2022-02-28 13:58:04 -08:00
Prashant Kumar 7c637eebc3 [LINALG] Decompose aten_hardswish op.
`aten.hardswish` op is decomposed into (x/6) * Relu6(x+3).
2022-02-25 21:59:27 +05:30
Gaurav Shukla 056cd2078d Revert "[LINALG] Decompose `aten.batch_norm` into `aten.native_batch_norm`"
This reverts commit 442ff4605c.
2022-02-25 15:46:55 +05:30
Ramiro Leal-Cavazos ba29d4f250
Add operand type invariant to `torch.overwrite.tensor.contents` (#606)
This commit adds the invariant to the op `torch.overwrite.tensor.contents` that
both of its operands have the same shape and size. In order to
maintain the invariant, special handling of this op is added to the
`RefineTypes` pass.
2022-02-22 11:41:46 -08:00
Prashant Kumar abbde7d439 [TORCH] The torch definition related to aten.gelu has changed.
New str argument approximation is added.
2022-02-18 21:57:46 +05:30
Nirvedh f8cb32faf0 LLVM bump
Major changes: opTrait changed to Trait, selectOp moved to arith dialect
assertOp moved to cf dialect
2022-02-16 15:28:13 -05:00
Gaurav Shukla 442ff4605c [LINALG] Decompose `aten.batch_norm` into `aten.native_batch_norm`
- This commit decomposes the `aten.batch_norm` op into the
  `aten.native_batch_norm` op, instead of lowering it to the
  `linalg.generic` op.
- It also adds run-time asserts in the `aten.native_batch_norm` lowering
  to make sure that the shape of the weight, bias, running_mean, and
  running_var must match the num of features.
- Since the `aten.native_batch_norm` op is not supported at TOSA backend,
  all the modules that are dependent on the `aten.native_batch_norm` op
  will fail and therefore they should be removed from the TOSA `passing`
  set.
- It also moves `checkNotNone` to utility.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-16 23:41:38 +05:30
Gaurav Shukla cd21dda867 [LINALG] Add E2E support for `aten.Hardsigmoid` op
This commit adds lowering of `aten.Hardsigmoid` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-16 02:35:18 +05:30
Ramiro Leal-Cavazos 00a6e9c1bb
[LINALG] Add value tensor variant to `fill_.Scalar` (#600)
This commit adds the op `PseudoAtenFillScalarOp` that represents
`AtenFill_ScalarOp` without the underscore. The approach is the same
as in commit dd998fa4d4.

Adding this op allows for a simpler and more consistent version of the
`empty` and `empty_like` op e2e tests.
2022-02-15 11:58:03 -08:00
Gaurav Shukla 41acde599b [LINALG] Add E2E support for `aten.[le|ge].Scalar` ops
- This commit adds lowering of `aten.le.Scalar` and `aten.ge.Scalar` ops
  as a part of `convert-torch-to-linalg` pass.
- It also creates a new test script `elementwise_comparison.py` for all
  element-wise comparison ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-15 12:21:09 +05:30
Ramiro Leal-Cavazos 413e6000d2
[LINALG] Add value tensor variant to `bernoulli_.float` (#597)
This commit adds the op `PseudoAtenBernoulliFloatOp` that represents
`AtenBernoulli_FloatOp` without the underscore. This is needed to make
sure that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value semantics
correctly.
2022-02-14 18:58:48 -08:00
Gaurav Shukla f00d1686c8 [LINALG] Add E2E support for `aten.[Bool.Tensor|Float.Tensor]` op
- This commit adds lowering of `aten.Bool.Tensor` and
  `aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
  input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
  `aten.Float.Tensor` op, it folds to the scalar number.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-14 23:09:20 +05:30
Yi Zhang 9e7b6cab08 Add folder for aten.gt/lt.float 2022-02-14 12:34:01 -05:00
Prashant Kumar 258660deb6 Add aten.bernoulli decomposition.
aten.bernoulli is decomposed to aten.gtTensor(aten.uniform(x), x).
2022-02-11 00:35:33 +05:30
Prashant Kumar 102c497c4c Add decomposition of _log_softmax op.
Decompose _log_softmax into log(softmax(x)).
2022-02-10 23:17:26 +05:30
Prateek Gupta 318946a650 [TORCH][MLIR] Add E2E support for `aten._unsafe_view` op.
This commit adds decomposition of `aten._unsafe_view` op into
`aten.view` op.

Signed-Off-By: Prateek Gupta<prateek@nod-labs.com>
2022-02-10 22:28:58 +05:30
Ramiro Leal-Cavazos 9b89f8eb3f
[TORCH][MLIR] Add E2E support for aten.clone (#571)
This commit adds support for the aten.clone op.
2022-02-09 19:31:03 -08:00
Gaurav Shukla bd177bdfc7 [TORCH][MLIR] Add run-time assert support in Torch-dialect
- This commit adds `aten.assert` op in the Torch dialect.
- The `aten.assert` op is lowered to `mlir::Assert` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-09 12:03:01 -05:00
Gaurav Shukla 2fefe68ffd [TORCH][MLIR] Add E2E support for `aten.native_batch_norm` op
- This commit adds support for `aten.native_batch_norm` operation.
- The current implementation only supports inference mode of
  `aten.native_batch_norm` op.

Signed-Off-By: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-08 02:54:03 +05:30
Prashant Kumar ccf546f14c Add aten::nll_loss_backward op
The lowering of aten::nll_loss_backward op has been added
from torch to linalg dialect. The changes has been made as
a part of -torch-convert-to-linalg pass.

Signed-off-by: Prashant Kumar prashant@nod-labs.com
2022-02-04 21:57:53 +05:30
Yi Zhang 0cb216a1ad [Torch][Linalg] Add basic support for RNG
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
2022-01-31 18:56:42 -05:00
Yi Zhang 5d9a15263a [TORCH] Add aten.std e2e support 2022-01-31 15:17:49 -05:00
Prashant Kumar e58b66bc3b Add lowering of `aten.max.dim` op.
Lowering of `aten.max.dim` op has been added.
2022-01-31 21:41:22 +05:30
Liam Fitzpatrick 8bc028af05 Fold __is__ and unchecked_cast of derefine
The added e2e maxpool testcase from #545 was not getting a static shape
due to an unfolded prim.If when RefineTypes was called. This was because
of unfolded torch.iaten.__is__ and torch.prim.unchecked_cast operators
with torch.derefine operands.
2022-01-28 17:54:40 -05:00
Yi Zhang e1b3e5bc92 Fix build failure 2022-01-28 13:21:36 -05:00
Suraj Sudhir eb06d21765
[tosa] Implement conv2d support (#541)
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2022-01-26 19:16:13 -08:00
Yi Zhang ad4b9e0369 Minor fixes 2022-01-24 19:21:15 -05:00
dan 3745f54489 Update external/llvm-project
- Add `qualified` to ods because of
https://reviews.llvm.org/D113873 and https://reviews.llvm.org/D116905
- Needed to revert https://github.com/llvm/torch-mlir/pull/520 as it
was based on an old torch version.
https://github.com/llvm/torch-mlir/pull/527 will bring this back with
a better design.
- Change ConvertAtenCatOp to use more accurate tensor shape info and
as much static info as possible to pass `tensor.insert_slice`
verification code added by https://reviews.llvm.org/D114715
- Other minor fixes
2022-01-18 13:25:42 -05:00
Yi Zhang 40efd2cb8e Revert "Add non-RNG aten ops to aten dialect."
This reverts commit c9a343267c.
2022-01-18 13:25:42 -05:00
Suraj Sudhir edf4a0e729
[tosa] Add more common utility functions (#525)
- Common code as TF repository, being moved to MLIR core.
- Will support further legalizations to be published.

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2022-01-14 13:57:27 -08:00
Prateek Gupta c9a343267c Add non-RNG aten ops to aten dialect.
This commit adds the aten ops which do not require random number
support to aten dialect. This commit also adds some of the missing
torch types.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2022-01-14 14:20:33 +05:30
Liam Fitzpatrick 077e55d756 Add support for constant_pad_nd
Note that to enable folding of the code coming from an example
like the ConstantPad2dStaticModule e2e test, support for other
operations had to be added/improved:
- aten::neg.int
- aten::eq.float
- aten::eq.str
- prim::Uninitialized
2022-01-11 10:25:25 -05:00
Vivek Khandelwal ca662dc9cc [MLIR][TORCH] Add E2E support for aten.threshold, aten.threshold_backward op
This commit adds lowering of `aten.threshold` op
This commit adds lowering of `aten.threshold_backward` op

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-01-10 11:56:56 +05:30
Gaurav Shukla 3c40539b34 [TORCH][MLIR] Add E2E support for `aten.[ones_like|zeros_like]`
- This commit adds E2E support for `aten.ones_like` and
  `aten.zeros_like` ops.
- Adds support for non-None `dtype` argument of `aten.empty_like` op.
- All the unit test cases related to constant tensor allocation like ops
  are moved to a different file named `constant_alloc.py`.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-01-06 20:24:40 +05:30
Vivek Khandelwal 4486de5ef3 [MLIR][TORCH] Add E2E support for torch.arange op
This commit adds lowering of `aten.arange.start_step` op.
This commit decomposes `aten.arange` and `aten.arange.start` into
`aten.arange.start_step` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2021-12-27 22:45:48 +05:30
Gaurav Shukla a83004c806 [TORCH][MLIR] Fold trivial cases of `aten.to.dtype` and `aten.view` op
- It folds `aten.to.dtype` when the input tensor type and result type
  are exactly same.
- It folds `aten.view` when the rank of both the input tensor type and
  result type is unity.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-24 13:32:34 +05:30
Nirvedh 3cb46cecef Added aten::t() Op 2021-12-22 10:57:10 -05:00
Yi Zhang d8ba68119e Lower aten::view with linalg.collapse and linalg.expand
We only handle the expanding OR collapsing cases, we do not handle
expanding And collapsing happening at the same time or cases where
it's neither collapsing nor expanding like view of [2,3] for
3x2 tensor.

It's assumed that if a shape list element is got from
`aten.size(tensor, dim)` the corresponding dim is not splitted or
collapsed. This assumption makes it easier to deal with dynamic shapes.
2021-12-16 17:58:20 -05:00
Gaurav Shukla eddc09aa55 [TORCH][MLIR] Add E2E support for `aten.eq` and `aten.lt` ops
- Added E2E support for `aten.eq.Tensor` and `aten.lt.Tensor` ops. Both
  the operands are expected to be of the same type, i.e., type promotion
  is not addressed as a part of this commit.
- Added E2E support for `aten.eq.Scalar` and `aten.lt.Scalar` ops.
  Tensor operand type to Scalar operand type promotion has not been
  handled in this commit.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-16 18:47:22 +05:30
Ramiro Leal-Cavazos 707c113463 Fix naming of results in ODS generator
This commit fixes the naming of results in the torch ODS generator
when dealing with multiple results. In particular, this commit appends
an index to each result name to guarantee that they are all unique.
2021-12-15 13:53:15 -06:00
Gaurav Shukla a778f990e9 [TORCH][MLIR] Add E2E support for `aten.ceil` op
This commit adds lowering of `aten.ceil` op as a part of element-wise
ops lowering.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-12 01:15:47 +05:30
harsh 03b6edce68 Add where, gt, bucketize and reshape ops to Torch dialect
This patch adds the where, gt, bucketize and reshape
ops to the Torch dialect. These ops are present in the histogram
calibration module.

TEST: Successfully lowers ops to Torch dialect in histogram module.
2021-12-10 10:08:20 -08:00
Prateek Gupta cfc8de36f8
[MLIR][TORCH] Add E2E support for `aten.native_layer_norm`. (#470)
This commit adds support for aten.native_layer_norm operation. Here
the previous code for aten.layer_norm is tweaked a little bit to
accomodate both mean and variance values alongwith the layer norm
value. This commit also adds decomposition of aten.layer_norm into
aten.native_layer_norm, which was previously getting lowered directly
to linalg.

Signed-Off-By: Prateek Gupta<prateek@nod-labs.com>
2021-12-10 19:06:19 +05:30
Gaurav Shukla 5a47f92390 [TORCH][MLIR] Add E2E support for `aten.squeeze.dim` op
This commit adds lowering of `aten.squeeze.dim` op into
`linalg.TensorCollapseShape` op. Here, the dim(th) dimension of the
input tensor is not supposed to be dynamic.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-10 17:01:20 +05:30
Gaurav Shukla f34eb66124 [TORCH][MLIR] Add E2E support for [`aten.gt.Scalar`|`aten.where.self`]
This commit adds lowering of `aten.gt.Scalar` and `aten.where.self` as a
part of element-wise ops lowering.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-09 12:47:10 +05:30
Prashant Kumar 977b1b03ea Add aten::nll_loss_forward op lowering.
The op lowering has been added as a part of `torch-lower-to-linalg`
pass. This takes care of ignore_index but the weight and reduction
operand is still to be accounted for.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-12-07 17:11:08 +05:30
Suraj Sudhir c9c9b68d1f [tosa] Add Torch reduction operators
- Supports variants with multiple dims, one dim, all dime
- Leverages legalize_common and legalize_utils code from
TensorFlow-TOSA work

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2021-12-03 09:01:48 -08:00
Prashant Kumar ab6211184f Bug fixes that pops up when updating generatedAten ops td
There is an op name change that requires trivial changes.
Also, some of the warning has been fixed.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-12-03 22:18:18 +05:30
Vivek Khandelwal 46a2189a41 [MLIR][TORCH] Add E2E support for aten.bitwise_and.tensor op
This commit adds lowering of `aten.bitwise_and.tensor` op.

Signed-Off By: Vivek Khandelwal vivek@nod-labs.com
2021-12-02 21:06:15 +05:30
Vivek Khandelwal 46a0668b3b [MLIR][TORCH] Add E2E support for aten.mean and aten.numel op.
This commit adds lowering of `aten.mean` and `aten.numel` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2021-12-02 11:51:13 +05:30
Gaurav Shukla 73b27b32dc [MLIR][TORCH] Add E2E support for `aten.squeeze` op
This commit adds lowering of `aten.Squeeze` op into
`linalg.TensorCollapseShape` op. The size 1 dynamic dimensions are not
handled as a part of this commit.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-11-30 23:00:28 +05:30
ds1231h 9ad5954e41 aten.abs and aten.reciprocal to linalg 2021-11-30 11:31:55 -05:00
Yi Zhang 5d28549c2c Add folder for torch.aten.Int.Tensor
This is to fold the common pattern from Bert inference like:
```
%111 = torch.prim.NumToTensor.Scalar %110 : !torch.int ->
    !torch.vtensor<[],si64>
%112 = torch.aten.Int.Tensor %111 : !torch.vtensor<[],si64> ->
    !torch.int
```
2021-11-30 21:55:48 +05:30
Daniel Garvey 539511c19b
Add dropout op (#436)
Co-authored-by: dan <dan@nod-labs.com>
2021-11-29 12:30:03 -06:00
Liam Fitzpatrick 7616d28ce1 Add leakyrelu support 2021-11-27 23:04:46 +05:30
Prateek Gupta f461a7ebce
[TORCH][MLIR] Add E2E support for aten._softmax operation. (#431)
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2021-11-25 11:19:02 +05:30
nodlabs 67ce816fca lowered addcmul and addcdiv to linalg 2021-11-24 17:26:47 -05:00
Prashant Kumar ea7a30f9b9 Add e2e test for aten.log_softmax_back_data op
aten.log_softmax_back_data op lowering and required
tests has been added. Some NFC have also been added.

Signed-off-by: Prashant Kumar prashant@nod-labs.com
2021-11-19 00:08:28 +05:30
Gaurav Shukla 663fc1ef51 [MLIR][TORCH] Add E2E support for [`aten.mul.Scalar`|`aten.addmm`]
This commit adds lowering of `aten.mul.Scalar` and also adds
decomposition of `aten.addmm` to `aten.mul.Scalar`, `aten.add.Tensor`
and `aten.mm` ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-11-18 22:26:41 +05:30
Prateek Gupta ecf78b9849
[TORCH][MLIR] Add E2E support for `aten.gelu_backward` operation. (#418)
This commit adds new operation `aten.gelu_backward` in the aten
dialect and adds lowering of this operation from aten to linalg.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2021-11-17 14:59:38 +05:30
Yi Zhang 0fe70994e5 Add support for multiple return values
This change is to unblock the work of some backprop ops returning more
than one tensors. We will need to think of a more scalable approach
in the future if more flexible return types combinations are needed.
2021-11-16 21:07:45 -05:00
Sean Silva 6e8d39642e
Clarify wording 2021-11-16 16:13:04 -08:00
Yi Zhang 53733933a4 Update llvm upstream to 0b17336f793108a7b10c3fa913039144ef1d0f61
Update AsmPrinter/Parser and MatchAndRewrite
2021-11-16 13:04:51 -05:00
Prashant Kumar 909f7d7171 Add e2e testing for aten_tanh_backward op.
The e2e testing for aten_tanh_backward op has been added.
The testing is done for ref_backend.
2021-11-09 11:28:49 -05:00
George Petterson 2764e86f02 Add Rsqrt 2021-11-09 11:08:28 -05:00
Yi Zhang 3bd9d2a4c7 Add e2e support for aten._softmax_backward_data.
Decompose aten._softmax_backward_data into aten math ops. Also decompose
`aten.size` to facilitate decomposing _softmax_backward_data.
2021-11-09 13:09:30 +05:30
George Petterson e23cabf3a9 Add log2 2021-11-08 16:19:59 -05:00
Wang Kangyu 4bb9b44775 Add lowering of "aten.pow.Tensor_Scalar" op
Add e2e support for torch.pow(Tensor, Float)
2021-11-08 09:19:50 -08:00
Wang Kangyu b33543af85 Add lowering of aten.floor op 2021-11-06 17:31:44 -04:00
nodlabs 5ff823ace9 lowerd Sqrt to linalg
reused clang-format, as changes got deleted
2021-11-06 11:29:46 -04:00
Prashant Kumar ef897dbb19 Add lowering of `aten.log_softmax` op.
The `aten.log_softmax` is decomposed into `aten.softmax` and
`aten.log` op.
2021-11-03 22:10:05 +05:30
Prashant Kumar 127c7d8e27 Add lowering of `torch.log` op
The lowering of `torch.log` op has been added.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-11-02 21:18:00 +05:30
George Petterson 6dde5b347e Add rsub 2021-11-02 09:56:48 -04:00
Prashant Kumar 53b4275ef5 Add lowering of `aten.Int.Tensor` op.
The lowering of `aten.Int.Tensor` op has been added.
The changes has been made as a part of `convert-torch-to-linalg` pass.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-11-01 21:58:08 +05:30
Yi Zhang 752abc8d01 Add type promotion code to refine types.
The types have different levels of categories: where
complex > floating > integral > boolean (> means left hand
side has higher category).

The operands have different levels of priorities where:
dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor.
This is represented by the `ResultTypeState.dimResult`,
`ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in
the source code.

For operands of the same priorities, the result type should be the
highest categories with sufficient width to hold all operands.

By default, only the highest priority operands participate in the type
promotion logic. Lower priority operands participate if they are in
a higher category than any higher priority operands.

For example, <[],f32> (lower priority) and <[1], si64> tensor would
result in <[?],f32> tensor because floating > integeral. Another example
<[],f64> (lower priority) and <[1], f32> tensor would result in
<[?], f32> tensor because f32 and f64 are the same category.

The ScalarType enum definition, type promotion table, ResultTypeState
struct definition and some helpers are copied from
aten/src/ATen/native/TypeProperties.*
Other references:
- https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc
- https://github.com/pytorch/pytorch/issues/9515

Other minor changes:
1. Fix `visitExpandLikeOp` to consider cases where the given sizes list
size is larger than the input rank.
2. Add back the somehow deleted `torch.aten.softmax.int` tests in
decompose-complex-ops.mlir.
2021-10-29 11:17:39 -04:00
Prateek Gupta c33a2ca952 [TORCH][MLIR] Add E2E support for aten.permute.
This commit adds lowering of aten.permute to linalg.generic operation.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2021-10-28 10:25:26 -04:00
Sean Silva 30df2ec71b Add min/max/clamp support.
Part of #380

Also
- BoolType is not considered as Scalar
- e2e framework fixes for nan handling
- `tu.rand(..., low=, high=)` support
- delete unused variable (fix warning)
- Add IouOfModule from #380 to e2e test suite (this is a common
  calculation in vision models)

 Your branch is ahead of 'origin/main' by 1 commit.
2021-10-27 13:29:21 -07:00
Prashant Kumar 5009cbf55c Add lowering of aten.matmul op.
Lowering of `aten.matmul` op is added from torch to linalg dialect.
The different cases correspond to
https://pytorch.org/docs/stable/generated/torch.matmul.html.
TODO: Broadcasting in case of batch-matmul is yet to be taken care of.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-10-26 12:45:09 -04:00
Boian Petkantchin e276dbbaa6
Add aten::gelu lowering (#374)
* Print more exception info on error during test execution

* Fix formatting

* Add aten::gelu lowering

Co-authored-by: Boian Petkantchin <boian@nod-labs.com>
2021-10-25 16:16:01 -07:00
Yi Zhang abfaf8c577 Add aten.ne.bool to make CI pass 2021-10-21 14:45:41 -04:00
George Petterson 8853dfbc74 Add broadcast 2021-10-19 13:33:31 -04:00
Yi Zhang a459e09ab7 E2e support for aten.softmax.int and aten.embedding
- Added a DecomposeComplexOps pass to decompose complex torchOps.
- Refactored `visitAtenArgmaxOp` and `visitAtenAnyDimOp` to
`visitReductionAlongDimIntOp`.
- Moved some helper functions into
torch-mlir/Dialect/Torch/Utils/Utils.h to be shared by multiple files.
- Added support for f64 tensor as argument and return types.
2021-10-18 17:57:45 -04:00
dan 7750d2173a add argmax lowering
Add argmax lowering from torch to linalg
2021-10-13 14:31:16 -04:00
Sean Silva 0c5c84d63d Add a basic TOSA E2E backend.
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```

The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.

Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
  the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
  `abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
2021-10-08 09:59:45 -07:00
Sean Silva b74779ff8d Remove stray references to non-existent .td file.
This must be old copypasta.
2021-10-08 01:21:23 +00:00
Yi Zhang 98ba255288 E2e support for layernorm. 2021-10-04 14:15:13 -04:00
Sean Silva f0ed9e2d8d Fix update_torch_ods.sh 2021-10-01 17:47:25 +00:00
Sean Silva 5b6902e31c Dual license the torch-mlir project.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.

The standard file comment is now:

```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```

See `LICENSE` in the project root for the terms of both licenses.
2021-10-01 10:46:08 -07:00
Sean Silva 5917f1dc47 Remove last mentions of IREE. 2021-10-01 17:28:07 +00:00
Yi Zhang 89225b0cd8 Add BertSequenceClassification model to e2e
Use torch tracing to get the module because the original model is not
TorchScriptable out of box.
2021-09-30 13:30:29 -04:00
Ramiro Leal-Cavazos b59f2cb673
Implement the lazytensor package (#331)
Implement the `lazytensor` python package for converting
lazy computations captured by the Lazy Tensor Core into MLIR.
This PR also fixes a few things with `torchfx` and its example
2021-09-28 17:25:06 -07:00
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva d8f603a4e5 Remove old stuff in prep for move-to-root. 2021-09-27 17:11:08 -07:00
Sean Silva a99cbeeb7e Move TorchConversion dialect and TorchTo* into torch-mlir 2021-09-23 21:39:31 -07:00
Sean Silva 2213584c4f VerifyBackendContract -> VerifyLinalgOnTensorsBackendContract
This moves it into TorchConversion since it is only needed there.

This removes the Backend/ directory.
2021-09-23 21:39:31 -07:00
Yi Zhang 603e068e45 E2e implementation for `aten.cat`,`aten.gather`, `aten.bmm`
Also contains the following changes:
- Remove derefineOp canonicalizer because it's not safe.
- Support for optional tensor and list tensors in reduceOpVariant. This
only works for some special detected and easy to handle cases. For list,
it covers the case list is got from a `ListConstruct`. For optional, it
covers the case optional is constructed from a `DerefineOp`.
- Remove the `inferReturnTypes` for `FromBuiltinTensorOp` because it's
not safe to deduce types from the input. For example, a built-in tensor
of i8 could be converted to si8 or ui8. It's better to let the user
specify the return type explicitly.
2021-09-22 19:15:01 -04:00
Sean Silva 1a0b953ea7 Eliminate almost all mentions of IREE.
A few remain in examples/docs that will be naturally be updated in due
time.

This regresses the list support and the general direction of more widely
supported control flow, lists/dicts/globals that we were going for with
the TorchScript path. The idea is that we are deferring that work to
make torch-mlir a very clean standalone thing. We will reboot it,
probably using some of the tools of iree_pydm to make it simpler, and in
a more natural place (such as an iree-torch repo that depends on IREE and
torch-mlir to build a working PyTorch frontend solution for IREE -- it
was really weird that npcomp depended on IREE).
2021-09-22 16:06:38 -07:00
Sean Silva a25163fbfa Remove old RefBackend
It is superceded by the new one.
2021-09-22 15:33:28 -07:00
Sean Silva 68fefe7e1f Remove NPCOMP_ENABLE_IREE CMake flag.
Our new dependency management solution relies:
- on the C++ side with the public iree-dialects project, which we
  include and are using as representative of some missing upstream
  ops (so we treat them "as if" they were upstream, with the hope of
  upstreaming them after some codevelopment has happened)
- on the Python side, with simple PYTHONPATH manipulation or installed
  Python packages. No CMake stuff required.
2021-09-17 09:27:49 -07:00
Sean Silva b6be96d722 [torch-mlir earthmoving (2/N)] Python code movement.
This moves the bulk of the Python code (including the Torch interop)
from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also
required reconciling a bunch of other Python-related stuff, like the
`torch` dialects.

As I did this, it was simpler to just remove all the old numpy/basicpy
stuff because we were going to delete it anyway and it was faster than
debugging an intermediate state that would only last O(days) anyway.

torch-mlir has two top-level python packages (built into the
`python_packages` directory):

- `torch_mlir_dialects`: `torch` dialect Python bindings (does not
  depend on PyTorch). This also involves building the aggregate CAPI for
  `torch-mlir`.
- `torch_mlir`: bindings to the part of the code that links against
  PyTorch (or C++ code that transitively does).

Additionally, there remain two more Python packages in npcomp (but
outside `torch-mlir`):

- `npcomp_torch`: Contains the e2e test framework and testing configs
  that plug into RefBackend and IREE.
- `npcomp_core`: Contains the low-level interfaces to RefBackend and
  IREE that `npcomp_torch` uses, along with its own
  `MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR
  python bindings. (all other functionality has been stripped out)

After all the basicpy/numpy deletions, the `npcomp` C++ code is now very
tiny. It basically just contains RefBackend and the `TorchConversion`
dialect/passes (e.g. `TorchToLinalg.cpp`).

Correspondingly, there are now 4 main testing targets paralleling the
Python layering (which is reflective of the deeper underlying dependency
structure)

- `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code.
- `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g.
  TorchScript import)
- `check-frontends-pytorch`: Checks the little code we have in
  `frontends/pytorch` -- mainly things related to the e2e framework
  itself.
- `check-npcomp`: Checks the pure MLIR C++ code inside npcomp.

There is a target `check-npcomp-all` that runs all of them.
The `torch-mlir/build_standalone.sh` script does a standalone build of
`torch-mlir`.

The e2e tests (`tools/torchscript_e2e_test.sh`) are working too.

The update_torch_ods script now lives in
`torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone
build.

This change also required a fix upstream related to cross-shlib Python
dependencies, so we also update llvm-project to
8dca953dd39c0cd8c80decbeb38753f58a4de580 to get
https://reviews.llvm.org/D109776 (no other fixes were needed for the
integrate, thankfully).

This completes most of the large source code changes. Next will be
bringing the CI/packaging/examples back to life.
2021-09-15 13:40:30 -07:00
Sean Silva 28a7738189 [torch-mlir earthmoving (1/N)] C/C++ code movement.
This creates the `external/torch-mlir` directory as an
LLVM_EXTERNAL_PROJECTS-compatible project (analogous to
`iree-dialects`) and completes movement/rename of all pure MLIR C/C++
compiler code into there. The next step will be to move all the Python
code / code that links/includes PyTorch C++ code (which currently lives
in `frontends/pytorch`) into a subdirectory here.

I call this "earthmoving" because it is mostly mechanical changes and
renames. As a quick summary (we can change this down the road easily)
- C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch`
- CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet`
- preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_`
- CMake `NPCOMPFoo -> TorchMLIRFoo`

The goal of this is to create a standalone project creating a center of
mass for entry into the MLIR ecosystem from PyTorch, suitable in scope
for eventual inclusion/ownership in PyTorch. The idea is that
`external/torch-mlir` will some day be pulled out into its own
repository, and then npcomp will simply pull it in as a submodule.

Layering-wise, what lives in `torch-mlir` lowers code from PyTorch
(currently TorchScript, but TorchFX or pytorch/xla-style tracing are
possible extensions) down to what we have been calling the "Torch
backend contract" which is cleaned up IR (inlining, simplifcation,
conversion to value tensors, ...) entirely in the `torch` dialect. This
is the branching off point for further lowering, of which npcomp takes
one opinion (outside `torch-mlir` of course!), namely the
`TorchConversion` dialect/transforms which lower to IR suitable for IREE
and other linalg-on-tensors based lower-level compilers.

Summary of changes:
- move `{include,lib,test}/Dialect/Torch` into `torch-mlir`
- move relevant parts of CAPI into `torch-mlir`.
- leave a few things related to the `torch-mlir` Python build commented
  out, which should be resolved in a subsequent change.
2021-09-10 21:44:37 -07:00
Sean Silva a7252f9a06 Add basic support for lists.
This plumbs through a vertical slice of support for lists.

The main chunk of new code here is AnnotateABIPass which captures the
program signature at the Torch backend contract layer, right before we
start `TorchConversion`. The `TorchConversion` lowering process is lossy
w.r.t. types, so it's necessary to do this for all targets in general.
Like using `!iree.list` directly, we use IREE's ABI annotation
representation for this, although there is nothing very IREE-specific
about it (see
https://github.com/google/iree/blob/main/docs/developers/design_docs/function_abi.md)

We change `ListLiteralModule_basic` to use `!torch.int` because IREE
doesn't support f64 yet (and we don't yet have a way for users to say
that they want `!torch.float` to lower as f32).

Recommended review order:
- AnnotateABIPass and tests
- Arg marshaling in npcomp_backend.py and `iree.py`
- Updates to `list_programs.py` / `xfail_sets.py`
- Moving DeleteDeadIREEListsPass to Backend/Common, so that backends
  that don't support lists can use it. RefBackend uses that pass, for
  example.
2021-09-09 20:48:55 -07:00
Yi Zhang 73d553e168 MT model compilation minor changes
This contains the following changes:
 - Fix optional knowledge propagation. The initial knowledge should
 always be NotNone for the operations we implemented.
 - Add Folder for `prim.dtype`
2021-09-09 19:02:48 -04:00
Ramiro Leal-Cavazos 6724de7692 Added sum lowering
Added lowering to torch.sum into linalg
2021-09-03 17:37:06 -07:00
Sean Silva 1dec561cfd Update llvm-project to 830c0b9023cd0cf91955900e0d96283e7a8c3711
- builder.getSymbolRefAttr is gone.
- OpAsmOpInterface's getAsmResultNames method needs explicit override
- a bunch of churn for builtin.func needing to be made explicit (and
  sometimes implicit?)
- operation printers no longer need to print the operation name
  themselves.
- snuck in beneficial trivial addition to TmpDeleteDeadIREEListsPass to
  test a particular upstream change e2e with my local patchset.
2021-09-03 14:16:38 -07:00
dan d9df4bfc95 Add sigmoid lowering
Follows existing conventions for activation functions
2021-08-30 17:32:23 -04:00
Sean Silva 29e1b2fe89 Delete RestrictedCanonicalizer
It doesn't work properly with the new dialect registration framework.
This was latent and only was exposed when running through npcomp-opt.
Not worth investing the brainpower to fix now.
2021-08-27 19:09:29 +00:00
Yi Zhang d6b9709fa5 Changes to refine types
- Add `!torch.optional` knowledge tracking
- Changes to improve type propagation for branches and terminators. See
examples in `refine-types-branch.mlir`
- Refator to separate handling of different ops from `visitOperation`
- Add refine types for a few new ops
2021-08-27 11:42:00 -04:00
Yi Zhang bc5eae41ca Add more folders to fold away branches
Added folders to a few binary computing ops, `TupleUnpack`,
`__contains__.str` and `__getitem__.Dict_str`.
2021-08-26 17:37:49 -04:00
Sean Silva cab8d922ec Add TorchToIREE and factor out TorchConversion dialect.
This converts a basic list op (torch.prim.ListConstruct) to the IREE
dialect.

```
    def forward(self, x: float):
            return [x, x]
```

turns into:

```
builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> {
  %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float>
  return %0 : !torch.list<!torch.float>
}
```

which turns into:

```
builtin.func @forward(%arg0: f64) -> !iree.list<f64> {
  %c1 = constant 1 : index
  %c0 = constant 0 : index
  %c2 = constant 2 : index
  %0 = iree.list.create %c2 : !iree.list<f64>
  iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64
  iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64
  return %0 : !iree.list<f64>
}
```

As part of doing this, I realized that it was time to formalize the IR
form that we reach right before running TorchTo{Linalg,Std,...}. We now
call it the "Torch backend contract". We then lower the "Torch backend
contract" to the "npcomp backend contract", which involves the new
TorchConversion (`torch_c`) dialect, which holds ops that need to
operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE
list, etc.) and the `!torch` types.

This made more sense, as I realized that if I didn't factor out
`torch_c` then the Torch dialect would have a dependency on IREE
dialect (we previously didn't notice this was an issue because we only
depended on `builtin` types), which seemed wrong to me.

Recommended review order:
- TorchToIREE.cpp / `TorchToIREE/basic.mlir`
- Look at the new structure of createTorchScriptToNpcompBackendPipeline.
  It now lives in TorchConversion/Transforms/Passes.cpp and cleanly
  calls into `Torch::createTorchScriptToTorchBackendPipeline` for the
  frontend lowering to the Torch backend contract.
- Mechanical change extracting
  `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new
  TorchConversion dialect, and a few passes specific to the lowering
  from the Torch backend contract to the npcomp backend contract.
- Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that
  we convert lists as part of operand materialization, we need to use
  the original operands). Also added test for AtenMaxPool2dOp and fixed
  m_TorchConstantIntList.
- TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that
  are created as part of operand materialization for conv/max pool/avg pool ops
  in TorchToLinalg.
2021-08-16 15:01:58 -07:00
Yi Zhang 85ff8b692b Fix compilation errors from MT model
With the following changes the compilation can continue until
RefineTypes pass:

- Add operators without ODS into `torch_ods_gen.py`
- Add some new optional and list types in `TorchTypes.td`
- Add some folders for aten int type comparator ops
- Modify GlobalizeObjectGraph.cpp. For global slots that's not used,
dont check if an aliased value is stored in more than one of global
slots. This can work around a failure where the same tensor is stored
in multiple "version" slots which are not used.
2021-08-16 16:37:23 -04:00
Yi Zhang bfc3ee35c6 Import Machine Translation model to MLIR.
This includes the following changes to import MT model into MLIR. There
are still a lot of work to for actual compilation.
- Add `torch.dict<>`, `torch.any`, `torch.number` types
- Add `torch.prim.DictConstruct` op
- Fix `torch.prim.TupleConstruct` op assembly format to include resulting types
2021-08-10 15:22:06 -04:00
Sean Silva a3bfd115ee Remove npcomp-iree-backend-lower-linkage pass.
This is no longer needed by IREE.
2021-08-09 15:28:02 -07:00
Sean Silva 902c2e579b Add resnet inference jupyter notebook.
This takes the example from torchscript_resnet18_e2e.py and puts it into
a slightly cleaned up notebook form.

It's still a little rough around the edges. Areas for improvement:
- Installation / setup.
- API usability.

Also,
- Add `npcomp-backend-to-iree-frontend-pipeline` since we will be adding
  more stuff there.
- Slight cleanups.
2021-08-09 14:34:43 -07:00
Sean Silva f168cacd6d Remove TCF and TCP.
These were legacy concepts that are now superceded by direct Torch to
linalg-on-tensors lowering. These were based on some very early thinking
related to the layering of frontends vs codegen, which is now obsolete
because:
- We expected a lot more centralization at the frontend (TCF) level. It
  turns out that frontend needs really vary a lot, and there is no grand
  unifying TCF dialect plausible. The additional layer isn't worth it.
- Linalg-on-tensors obsoletes the primary need for TCP. There are still
  a few things not representable with linalg-on-tensors, but the support
  is growing and the whole "not included in linalg-on-tensors" direction
  needs to be rethought. Our TCP dialect didn't cover any of the
  actually important things in this space (such as sort, FFT, top-k,
  etc.).

See historical [slides](https://drive.google.com/file/d/1iljcpTQ5NPaMfGpoPDFml1XkYxjK_6A4/view) / [recording](https://drive.google.com/file/d/1jSPa8TwPKUt0WuLquGc8OgSUVYJHMvWZ/view)
for more details on the origin story here.

Their presence was confusing users too
[bug](https://github.com/llvm/mlir-npcomp/issues/248).

Also,
- Trim down npcomp-run-mlir testing. It was testing TCF to TCP
  lowering for the most part. The essential stuff is retained and
  rephrased with linalg-on-tensors. (we should probably rename it
  "refback-run" or something, as it is just a way to invoke RefBackend)
- test/Python/Backend/RefJIT/simple_invoke_numpy.py is XFAIL'ed. Our
  "anti-framework" direction seems to be the likely future path.
2021-08-02 12:08:39 -07:00
Stella Laurenzo 2dbab50444
Rework the python build to a static assembly of MLIR+NPCOMP (#251)
* Adapt to python build system updates.

* Bump llvm to 310c9496d80961188e8d8f8ad306cdf44bd7541f (includes python build updates)
* Adds refback C-API.
* Re-layers all python builds.
* Rework CI.
2021-07-27 16:10:10 -07:00
Yi Zhang 89d4931324 Linalg lowering for aten.conv2d and aten.AdaptiveAvgPool2d
1. Add m_TorchConstantIntList
2. Lowering for aten.conv2d
3. Lowering aten.AdaptiveAvgPool2d
2021-07-09 15:04:29 -07:00
Sean Silva 83b5b5456d Bump llvm-project to da289a174fc6617c7be37be2947480510fd4f02a
- Build adjustments for `.cpp.inc` dialect files.
- Renaming of `memref.dim` to `tensor.dim` for tensor case.

Minor changes:
- Renaming of `mlir::linalg::ReassociationIndices` to
  `mlir::ReassociationIndices`.
- Adjust command line option parsing in npcomp-run-mlir.
2021-07-07 13:57:29 -07:00
Sean Silva 79928cd2dd Generalize support for elementwise ops.
We plumb through e2e a fair number of interesting cases:
- unary, binary, ternary elementwise ops
- ops like `torch.aten.add.Tensor` that also take a scalar parameter
- static size-1 broadcasting

We allow the static size-1 broadcasting case, but emit a runtime error
in the case of dynamic size-1 broadcasting. This seems like a sweet spot
subset of things that can be lowered directly to linalg, while not being
overly constraining to users. This is consistent with what IREE is doing
for CHLO->Linalg lowering as well
([code](50bf7a87e4/iree/compiler/InputConversion/MHLO/BroadcastingToLinalgPatterns.cpp (L1))).

To test the static size-1 case, we added support for the
`torch.aten.unsqueeze` op and lowering for it through
`linalg.tensor_expand_shape`. This involved a generalization of
`MaximizeValueSemantics` able to handle it (the solution there also
works for `torch.aten.flatten.using_ints` which we need for ResNet
anyway)

Also, a few minor additional changes:
- Add `VerifyInvariantsBeforeBackendLowering` pass, which catches a
  large class of errors before we get to backend lowering (now that we
  are doing dialect conversion, the errors are way nicer if we just emit
  them up front rather than in the guts of a random pattern).
- Minor change to RefBackend to allow `linalg.tensor_expand_shape`.

Recommended review order:
- e2e tests in elementwise.py
- `ConvertElementwiseOp` in TorchToLinalg.cpp + elementwise.mlir test
- `ConvertAtenUnsqueezeOp` in TorchToLinalg.cpp + unsqueeze.mlir test
- RefineTypes.cpp + tests
- MaximizeValueSemantics changes + test
- VerifyInvariantsBeforeBackendLowering pass + test
2021-06-28 13:28:38 -07:00
Sean Silva 60a947b4a7 Add CastOpInterface to torch.prim.unchecked_cast.
This allows it to fold away in trivial cases.
2021-06-23 08:07:45 -07:00
Yi Zhang 45f2edfc7a Add TorchToSCF pass.
1. Add TorchToSCF pass.
2. Convert prim.If and prim.If.yield.
2021-06-23 08:06:43 -07:00
Sean Silva 79aade33da Make MaximizeValueSemantics a bit smarter.
This adds a pattern to MaximizeValueSemantics which does a simple
abstract interpretation within a block, which handles simple cases of
`torch.overwrite_tensor`, enough to remove all the unnecessary uses of
non-value tensors in ResNet right now.

Before/after IR:
[gist](https://gist.github.com/silvasean/a3e1ef625b19dfc63579f73cd3b543b6)

Also,
- Split `torch.copy.tensor` into `torch.copy.to_tensor` and
  `torch.copy.to_vtensor` which convert between value and non-value
  semantic tensors. This is a much cleaner factorization as they have
  very separate use cases and properties (e.g. different side effects)
- Remove the various canonicalization patterns they had, which were
  confusing because they resulted in limited forms of maximizing value
  semantics throughout the pipeline. We should structure our compilation
  pipeline such that only MaximizeValueSemantics should be maximizing
  value semantics.
- Adjust pass pipeline to only run MaximizeValueSemantics once.
- Make OverwriteTensorOp `$value` always be a value tensor and
  `$overwritten` be a non-value tensor.
2021-06-22 16:48:57 -07:00
Sean Silva 78d2cc0818 Make `torch.copy.tensor` canonicalization a bit smarter.
This removes most of the trivial cases that MaximizeValueSemantics needs
to handle, making it easier to see the nontrivial cases.
2021-06-17 18:11:58 -07:00
Sean Silva 333e07a74e Add `torch.vtensor.literal` op.
This op is much better behaved than the `torch.tensor.literal` op
(which is the new name of the `torch.tensor` op). In particular
`torch.tensor.literal`:
- always has a maximally refined type.
- always has value semantics.
- can be constant folded / CSE'd.

ReduceOpVariants is changed to perform the transformation from
`torch.tensor.literal` to `torch.vtensor.literal` (which in general
involves static information casts and copies.

This new op also allowed tightening up `torch.tensor.literal` to only
accept NonValueTensorType (instead of any tensor type).

This new ".literal" name is more descriptive. It was getting too
confusing seeing an op called just `torch.tensor` (we originally called
it that because that's the name of the similar function in the Torch
Python API, but it just doesn't fit here).
2021-06-17 14:37:04 -07:00
Sean Silva 4a0eb44d17 Add a !torch.float type.
This removes the dependence of the `torch` dialect on the low-level
builtin types.
Now the `torch` dialect is a standalone layer, suitable for targeting
from higher-level Python abstractions without any premature lowering to
primitive types.
2021-06-17 09:24:18 -07:00
Sean Silva f49ebf1690 Add `!torch.int` type.
This replaces the ad-hoc use of `i64` throughout the Torch layer, and
helps to keep it crystal clear the distinction between `!torch.int`
(which is modeling the Python `int` type) and the various types that
serve as dtypes of tensors, which are a totally different type universe.

Changes:
- `!torch.int` type and C bindings.
- Change `torch.constant.int` parser to not need the `: i64` at the end.
- `m_TorchConstantInt` matcher to aid with matching constants.
- BackendTypeConversion changes for `!torch.int` -> `i64` type
  conversion.
- Refactor finalizing patterns in FinalizingBackendTypeConversionPass
  (they were getting very repetitive).
- Mechanical rewriting of `!torch.int` to `i64` in all the tests, and
  `AnyTorchIntType` to `Torch_IntType` in the `.td` files.
2021-06-17 07:28:23 -07:00
Sean Silva 224afb186e Add folders for torch.aten.gt.int / torch.aten.ne.int
This fixes a "regression" on ResNet where we weren't folding away all
the control flow. For now, our policy is to "optimize hard enough" to
make that control flow go away, because we don't yet have a way to lower
to the backend the stuff guarded by the control flow (RaiseException,
string operations, etc.).

It remains to be seen how much optimization we decide to do at this
level in the fullness of time -- the torch op set is not particularly
well-designed (at least not idiomatically for MLIR) for general
optimization. Ideally, with really good backend support for various
features, all the heavy optimization will happen at that layer on `std`
ops and `scf` control flow. But I have a suspicion we might end up
needing more optimization earlier in the pipeline.
2021-06-16 14:04:31 -07:00
Sean Silva 8860b5c55d Add `torch.prim.If`
This removes the use of `scf.if`, which required laundering back and
forth between `i1` and `!torch.bool` in the frontend. We will eventually
lower this op to `scf.if`, but this results in a cleaner IR and layering
at the frontend.
2021-06-16 14:04:31 -07:00
Sean Silva 784156a998 Add `!torch.bool` type.
This finishes removing the dependence on the basicpy dialect!

Changes:
- Add `!torch.bool` type and replace use of `!basicpy.BoolType` in
  Torch-related code.
- Rename BuiltinTensorize to BackendTypeConversion since now it handles
  bool conversions (and, when we add !torch.int and !torch.float, it
  will handle those as well), and generalize the related utilities (I
  also moved them to Torch/Transforms since they aren't really part of
  Torch/IR).
  - Add `torch.to_i1` and `torch.from_i1` ops for materializations
- [cleanup] Reorganize `torch.constant.*` ops in TorchOps.td
- Remove dependency of `torch` dialect on `basicpy` dialect and also
  `std` dialect. For `std`, we use some call related ops, but the
  `torch` dialect itself never produces them (we have passes that do
  though).

This is fairly mechanical. Recommended review order:
- New stuff in Torch/IR
- New BuiltinTypeConversion files.
- Mechnical fixups elsewhere.
2021-06-16 13:22:00 -07:00
Sean Silva 3ccf6002af Add `torch.constant.int` and `torch.constant.float`.
- This removes reliance on basicpy.numeric_constant.
- Also, add OpAsmOpInterface to the `torch.constant.none` and
  `torch.constant.str` ops.
2021-06-15 15:29:42 -07:00
Sean Silva 2e850ecb72 Add !torch.str type.
- Remove dependence on `!basicpy.BytesType`.
- Add `torch.constant.str "s"` analogous to `torch.constant.none`.
2021-06-15 10:10:59 -07:00
Sean Silva 92ee0fa98f Add `!torch.tuple<T1, T2>` type.
This further eliminates the need for the `basicpy` dependency.

This required adding `torch.prim.TupleConstruct` to replace
`basicpy.build_tuple`.
2021-06-15 08:15:22 -07:00
Sean Silva 6b2424512b Make C API files more consistent
- Make consistent with MLIR Core
  - Use `//` or `///` comments.
  - Use `bool` type for booleans
  - No duplicated comments in .cpp files
- Split types into separate files `{Basicpy,Numpy,Torch}Types.h`
- Add dialect prefix consistently to C API symbols. We have lots of
  similarly named types (e.g. "list" type in basicpy and torch).
2021-06-14 15:34:43 -07:00
Sean Silva db282fd1b4 Introduce native `!torch.none` type.
- Add `torch.constant.none` op to construct it (naming is chosen to be
  analogous to Torch's representation of a prim::Constant with
  NoneType, rather than using the "singleton" terminology of Basicpy).
2021-06-14 13:30:58 -07:00
Sean Silva 81bcd7fb12 Move Torch type implementation code into TorchTypes.cpp 2021-06-10 16:46:47 -07:00
Yi Zhang e0ff5248fb Add TorchList type and prim::ListConstruct #218 2021-06-10 14:31:35 -07:00
Sean Silva 370e3270ab Introduce `!torch.tensor` / `!torch.vtensor` types.
This removes our reliance on the numpy dialect and avoids our off-label
use of the builtin tnesor type for modeling unknown dtypes.  The
`!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor.
The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic
tensor. The new types look as follows syntactically:

```
// Least-static-information, non-value-semantic tensor.
!torch.tensor
// Explicit form of least-static-information variant.
!torch.tensor<*,unk>
// Least-static-information, value-semantic tensor.
!torch.vtensor
// Explicit form of least-static-information variant.
!torch.vtensor<*,unk>
// Fixed-set of allowable element types, with first-class support for
// Torch's frontend signedness semantics.
!torch.tensor<*,si32>
// First-class support for unknown dtypes.
!torch.tensor<[?,?,?],unk>
// Standard MLIR representation of `?` for unknown dimensions.
!torch.tensor<[?,2,?,4],unk>
// Statically shaped / dtyped example.
!torch.vtensor<[1,2,3,4],f32>
```

This required fairly significant changes throughout the compiler, but
overall it is a big cleanup. We now have a much clearer layering of "the
Torch frontend lowering" vs "lowering to std + linalg + etc.".

At the C++ level, there is `ValueTensorType`, `NonValueTensorType`.
We also have a helper `BaseTensorType` (kind of like ShapedType) which
interoperates with those two.

Included changes:
- New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for
  creating torch tensor literals in the frontend.
- Consistently use signedness for the types (except i1 which I didn't
  touch -- we need to sort out the situation with !basicpy.BoolType
  there anyway so will be attending to that soon)
- Frontend can annotate whether an argument to the function has value
  semantics. We currently require this, as our backend contract does not
  currently allow us to even model the non-value-semantic case. Before,
  the value-semantic assumption was randomly injected in the middle of
  the pass pipeline.
- Move ArrayToTensor (now called MaximizeValueSemantics) and
  RefinePublicReturn passes to torch dialect.
- The TorchToStd and TorchToLinalg passes are now type conversions from
  `!torch.vtensor` to `tensor` and use the dialect conversion infra.
  The overall conversion pipeline is set up following the best practices
  of the "Type Conversions the Not-So-Hard Way" talk. This required
  introducing `torch-func-builtin-tensorize` and
  `torch-finalizing-builtin-tensorize` passes analogous to the upstream
  bufferization passes with the corresponding names (mostly just
  copypasta from there).
- Misc Torch-level canonicalizations -- we now cleanly layer the
  lowering to std later in the pipeline, so we are gradually lessening
  our reliance on random std constant folding before we get to that
  point.

Recommended review order:
- New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp
- New ops in TorchOps.td / TorchOps.cpp
- Less important / more mechanical stuff
  - Frontend changes.
  - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-06-10 10:56:48 -07:00
Sean Silva d66e8fe1f8 Get simple quantized model importing.
This is enough to import the program and get it through the compilation
pipeline. It of course fails at the VerifyBackendContract pass since
there is a lot missing, but the final IR for a simple quantized MLP is
looking pretty decent already:
[IR](https://gist.github.com/silvasean/f76bccd76e9b193d396cfb2f9a11f54d)

Main changes:
- Add support for importing torch quantized tensors, including
  `torch.per_tensor_affine.create` op and `!torch.qint8` element type.
- Add support for importing `LinearPackedParamsBase` (basically a weight
  + optional bias, but requires `torch.linear_params.create` op +
  `!torch.LinearParams` type to model it). This was less painful than I
  expected, as it has the necessary methods to opaquely unpack itself. I
  factored things so it should be easy to extend to other custom classes
  like `ConvPackedParamsBase`.
- Add minimal boilerplate for importing `quantized::*` ops, with
  `quantized::linear` being a motivating example.
- Add e2e test with simple quantized MLP (courtesy of @phoenix-meadowlark).

This is somewhat of an abuse of `!numpy.ndarray` / `tensor`, as
really the proper semantics of `!torch.qint8` dtype on a Torch tensor is
"check the quantizer object of the tensor for side data (scale/offset,
possibly per-channel) that defines the full semantics of the tensor". We
don't have any such notion of "side data" for `!numpy.ndarray` /
`tensor`, let alone anything that would have the associated behavior of
keying off the dtype to determine if the side data is present.
This will be fixed by a proper `!torch.tensor` type.
2021-05-20 11:28:20 -07:00
Sean Silva 2efda323ff Significantly restructure torch/aten import design.
This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.

This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).

Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
  imported as `torch.somens.someunqualname.someoverloadname` (skip the
  last dotted part if the overload name is empty), OR, if we don't have
  such an op registered, it is imported as
  `torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
  - The addition of the "overload name" is a critical element here, as
    the `(ns,unqual,overload)` triple is unique, which solves a lot of
    problems we were having.
  - This involves having separate MLIR ops for the `trailing_` and
    `.out` variants and all the different overloads. This seemed
    necessary, because the set of overloads is so wild and varied and
    unstructured. The previous design was leaning into some underlying
    structure that just isn't there -- the default situation is
    the "random overload that we want to manage on the MLIR side",
    rather than that being an exception. E.g.  `aten::ne` (not-equal)
    has 21 overloads, only 4 of which are c10 dispatcher ops see
    [gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
    and the "out" variant is really called `.Tensor_out` instead of
    `.out` as it frequently is for other ops.
  - Rationale for all being in `torch` namespace: the set of operators
    are so varied and unstructured that "dialect per namespace"
    doesn't result in anything resembling the typical MLIR dialect
    boundary expectations. We could maybe draw the boundary at
    dispatcher ops vs non-dispatcher ops, but that doesn't seem to
    really result in very much useful structure at this point in time.
  - Note: within the torch operator registry, we effectively have a
    mini-basicpy subdialect (already type-resolved), which is reasonably
    structured.
  - The existing Torch op interfaces are also removed -- now that we
    track the overload name, we can losslessly find the original
    operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
  `ReduceOpVariantsPass` that keys off certain traits (and perhaps
  eventually interfaces) to reduce variants of ops to a smaller set,
  ideally operating on immutable tensors and using surrounding ops to
  model the mutability/aliasing aspects.
  - Note: `torch.ns.unqual.overload` ops allow both immutable and
    mutable tensors (unlike the previous hard distinction in the common
    case). This is a premonition for a future change that will introduce a
    bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
  "ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
  It should look somewhat familiar, but the benefit of hindsight has
  allowed a lot of simplifications.

The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).

Recommended review order:
- Start at some of the new import IR, e.g. in
  `frontends/pytorch/test/node_import/prim.py`,
  `frontends/pytorch/test/acap_export/test_export_add3.py`, and other
  tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
  and associated generated files:
  - `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
  - `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
  traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
  `frontends/pytorch/csrc/builder`. Probably most interesting is the new
  code in `torch_to_mlir_utils.cpp` that has the logic to create the
  `torch.operator` ops or `torch.ns.unqual.overload` ops.

This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
2021-05-19 13:37:39 -07:00
Sean Silva 3d08c83580 Add flatten op recognition + shape refinement.
This op has complex aliasing semantics, so it is kept mutable for now.

With this, we reduce ResNet18 to a single BB with all aten operators
having rank + dtype:
https://gist.github.com/silvasean/2fcb1c6e4d4ae27461204a43ae9c5031
2021-05-03 09:54:44 -07:00
Sean Silva 122cae2ee3 Add aten::len.t, aten::size, and aten::gt.int primitive ops
Also add some canonicalizations that finally reduce ResNet down to a
single block.
2021-04-30 10:57:02 -07:00
Sean Silva ec6d06aa86 Add some more ResNet ops.
- aten::relu_, aten::max_pool2d, aten::adaptive_avg_pool2d, aten::batch_norm, aten::conv2d

No aten-to-linalg conversion for the latter ones, as they are fairly
substantial. At this point, I'm trying to get shape inference and stuff
working for them and the IR cleaned up.
2021-04-30 10:57:02 -07:00
Sean Silva 9257457d8a Add AllowsTypeRefinement trait and use it to improve RefineTypes
This trait lets us model the semantics of various aten/torch/numpy ops
that are insensitive to type refinements. This replaces
hardcoded/inconsistent checks for this property.

To show usage of this new trait, we fix up some old uses, and improve
RefineTypes to be smarter about rewriting with this trait.
2021-04-30 10:57:02 -07:00
Sean Silva 1c832604d2 Remove old aten-to-std / ATenLowering pass.
It was confusing now that we have `convert-aten-to-std`.
2021-04-30 10:57:02 -07:00
Sean Silva 55c3cc6624 Add recognition/folder/lowering for aten::__is__, aten::ne.int, and aten::dim
Interestingly, TorchScript has its own op (`torch::jit::Operator`)
registry separate from the dispatcher (it is a superset of the
dispatcher).

This is where the "prim" ops and some "aten" ops (that should probably
be renamed to "prim") live. In particular, `aten::__is__` is in that
latter category of "aten but really prim". This registry is also the
source of truth for what the TorchScript interpreter calls into when it
executes.

The bulk of the "not part of the dispatcher" ops live in
09feb5f579/torch/csrc/jit/runtime/register_prim_ops.cpp (L82)

And the registry itself lives in:
09feb5f579/torch/csrc/jit/runtime/operator.cpp (L196)

This fold further reduces the IR of ResNet by folding away some
more not-taken branches. These not-taken branches in ResNet require
first-class handling of the list type which we don't yet have on any
backend.
2021-04-30 10:57:02 -07:00
Sean Silva 7eb36b4ae7 Constant fold through basicpy.bool_cast.
This is the start of a push to getting ResNet running.

This involves throwing in the towel on an O0 pipelinie for now. See note
in the code. We keep an options struct with `optimize` flag, but it
default to true for now.
2021-04-30 10:57:02 -07:00
Sean Silva fb5f149e04 Reformat Passes.cpp and remove torch-globalize-pipeline.
The pipeline is subsumed by our lowering pipelines.
2021-04-30 10:57:02 -07:00
Sean Silva 179105ca3e Add basic MLP's to the e2e curriculum.
These tests pass on the reference backend.

- Add aten.linear op + shape xfer function + ATen->Linalg lowering.
 - Note: this needs to be more automated, and needs to cover more cases.
 - Current not implemented caveats:
  - size-1 broadcasting for bias vector (either static-size-1 or ? case)
  - higher-rank aten.linear ops (not produced by torch.nn.Linear though)
  - type promotion (still don't even know the exact rules here)
- Add folder for torch.derefine op. Now the inliner can clean it up as
  it inlines. (call boundaries are a main place we need to insert
  torch.derefine) This is brittle -- the other important case is control
  flow which will need to be handled via an extension to
  RefineTypes.cpp (as will more robust call handling). River has an
  in-flight patch to update it to the new dataflow framework so I didn't
  want to do anything intrusive here.
    - Also adjust torch.derefine syntax to use the keyword `to` instead of
      `->`, as most type-only, cast-like ops do.
2021-04-27 12:18:54 -07:00
Sean Silva 9ba77c6e13 Add InlineGlobalSlots pass.
This inlines global slots if possible. This allows them to participate
in folding, canonicalization, shape inference, etc.

Example use cases:
- inlining weights and biases that are readonly during inference
- inlining the "training" bool to allow stuff to fold away

For training use cases (especially internal training loop), we will need
something smarter to get good performance. That would look like an "SSA
formation" which promotes the global slots to tensors in the program,
flushing them back to the slots at the minimal number of necessary
places. We might want to let backends do that transformation though.
This also interacts with shape inference (type bounds on the slots to
even lower them to backends in the first place).
2021-04-27 12:18:54 -07:00
Sean Silva 3a890aa26c Miscellaneous changes while trying to work on ResNet18
- Move frontend lowering pipelines to c++ (this helps with reproducing
  failures in npcomp-opt)
- Add debugging printouts when compilation fails on RefBackendTestConfig

The experience now when a test fails during MLIR lowering is now like this:
```
NPCOMP TorchScript Object Graph IR -> NPCOMP Backend IR lowering failed with the following diagnostics:
failed to legalize operation 'torch.global_slot'
Module does not conform to npcomp's backend contract. See dialect conversion legality information above.

Error can be reproduced with:
$ npcomp-opt -torchscript-to-npcomp-backend-pipeline /tmp/ResNet18Module.mlir
```

And when TorchScript->MLIR import fails it looks like this:
```
PyTorch TorchScript module -> NPCOMP Object Graph IR import failed with the following diagnostics:
unhandled prim operation: %18 : int = prim::min(%17) # /usr/local/google/home/silvasean/.local/lib/python3.9/site-packages/torch/nn/functional.py:4532:4
```

Also,
- Add `--filter=<regex>` to e2e test harness to filter tests.
- Add a few prim ops that were needed to import ResNet18
- Fix torch.prim.Loop.condition assemblyFormat (it previously would not
  round-trip in the case of no loop-carried variables)
2021-04-27 11:51:11 -07:00
Sean Silva 544cb4ef54 Bump llvm-project to 484b6648fdd4b104eaf7a2504dd07b60af2c9f8d
- add_mlir_doc arg order
- fix some dependent dialects on passes that were now causing errors
- "encoding" attribute on mlirRankedTensorTypeGetChecked
2021-04-22 18:12:55 -07:00
Sean Silva c4123d4d4d Add npcomp-verify-backend-contract pass.
This pass verifies that a given module satisfies the contract that we
have for backends. This is phrased as an "allowlist", because we want to
keep this interface tight. Also, this gives much better diagnostics than
a backend randomly crashing or failing to compile would (though they
could still be improved).

This was especially painful because if we had
`tensor<?x!numpy.any_dtype>` slip through, at some point RefBackend
would convert it to a memref type and trip the "verify type invariants"
assertion which gives no location or anything and crashed the process,
which was very unpleasant.

We implement this with the dialect conversion framework, which works
reasonably well and was quick to put together and familiar, but is still
very "op oriented". We probably want to make this hand-rolled
eventually, especially the error reporting (the most useful kind of
error for a dialect conversion user is not necessarily the best for this
use case). Also, in production, these error will go to users, and need
to be surfaced carefully such as "the compiler needs a type annotation
on this function parameter" which in general requires some special
analysis, wordsmithing, and overall awareness of the e2e use case (such
as how much we can lean into certain source locations) to provide a
meaningful user-level diagnostic.

Also, add `inline` to the current frontend lowering pass pipeline to
allow slightly more complicated programs that otherwise would fail on
shape inference.
2021-04-20 12:00:35 -07:00
Sean Silva f5dfa02523 Add `aten.mm` to linalg lowering.
This is our first op with error semantics, and stresses the system.

There are a few design notes of special interest:
- RefineTypes.cpp's note about shape inference in the presence of code
  that dynamically produces and error, and it is provable statically.
- ATenToLinalg.cpp's notes about future automation of the ATen->linalg
  path.
- The notes in Passes.td about using low-tech `std.assert` ops instead
  of `shape.assuming`.

Note: Doesn't work on IREE yet due to the `std.assert` op (needs to be
lowered to `vm.fail` on the IREE side).
2021-04-16 12:03:31 -07:00
Sean Silva 28a0f02746 Add support for compiling through IREE.
Recommended review order:
- Changes in frontends/pytorch/examples/
- Changes in python/npcomp/compiler/pytorch/backend/
- Boilerplate for the `npcomp-iree-backend-lower-linkage` pass.

This change separates out a
`npcomp.compiler.pytorch.backend.frontend_lowering` module that does the
common lowering for all backends. The individual compiler backends
`npcomp.compiler.pytorch.backend.{refjit,iree}` now accept a loosely
defined "TCP + scalar code" IR mix that will be formalized in the
future as the interface to codegen backends.

This also required adding a small pass
`npcomp-iree-backend-lower-linkage` which adds `iree.module.export` onto
functions, and layering that into the frontend flow. The pass doesn't
require a C++-level dependency on IREE, which is nice for now. TBD how
we are going to handle lists (we hope we can get away with sneakerneting
some td files and relying on loose IR compatibility).

Running through IREE requires the ability to import `iree.compiler` and
`iree.runtime`, which can be obtained as follows:
```
python3 -m pip install iree-compiler-snapshot iree-runtime-snapshot -f https://github.com/google/iree/releases/tag/snapshot-20210406.200
PYTHONPATH="${PYTHONPATH}:${MY_IREE_BUILD}/bindings/python/"
```

This patch makes it painfully clear that we don't have any e2e testing
harness to really plug into, and also don't have a usable Python API to
our compiler stack (something usable in a jupyter notebook).
That will be addressed in subsequent commits. We've been flying by the
seat of our pants with this `examples` directory that isn't subject to
any kind of testing or real usability concerns.
2021-04-09 13:15:07 -07:00
Sean Silva 927546b3c5 Add RefinePublicReturn pass.
This pass allows shape information to be propagated to return types,
which is nontrivial and cannot be cleanly put anywhere else as it
changes the public ABI, which is a concern that we want to keep
concentrated in one place.
2021-04-07 11:06:34 -07:00
Sean Silva 1e357ae680 Add simple type refinement pass.
Currently implemented as a simple intraprocedural dataflow analysis over
a standard ShapedType lattice (hasRank, sizes, and elementType).

It currently hardcodes a few key pieces of information:
- shape transfer functions
- whether it is legal to update the operand type of an op

This needs to be made pluggable obviously and the core propagation logic
moved somewhere agnostic.
2021-04-07 11:06:34 -07:00
Sean Silva 6431b0f11f Add primitive ArrayToTensor (numpy-array-to-tensor) pass.
The current implementation is just sufficient to do a unary aten.tanh
from the e2e spike, and just applies some local rewrite patterns.  I've
sketched out the more full explanation of where this pass eventually
need to go in the pass docs.

Adding this required adding `numpy.tensor_static_info_cast`, which is
the tensor analog of `numpy.static_info_cast`. This op encapsulates the
same numpy-specific "no runtime code" casting semantics, in particular
the interpretation of `!numpy.any_dtype`. The
`numpy.tensor_static_info_cast` I see in practice now are "information
erasing" and will be removed by a later pass that exploits the fact that
aten ops are agnostic to the static info in the operand types (so
substituting a type with more static info is fine).

Side note: we *need* to do dtype and rank inference before aten->tcf
(which will eventually mostly be aten->linalg+guards), because each aten
op is idiosyncratically overloaded based on dtype and rank. Without
copying that idiosyncratic overloading into lower layers (layering
violation), we cannot really lower it to anything until we do that.
2021-04-05 17:56:35 -07:00
Sean Silva 30356c41c8 Add torch-adjust-calling-conventions pass.
This pass incorporates torch.type_bound info and also removes NoneType
returns (eventually it will rewrite tuple types too, but can't yet
because !basicpy.TupleType doesn't track element types).

Recommend looking at adjust-calling-conventions.mlir first to see what
it is doing, and holding your nose for the implementation of the pass.
I decided to implement this with the conversion framework, because it
gives us *some* goodies for type conversion -- mainly avoiding large
amounts of tricky RAUW dances. Unfortunately, the conversion framework
isn't a perfect fit for a couple reasons:
- the incorporation of torch.type_bound is a context-sensitive rewrite
  (requires looking at the arg attr, not just the type).
- NoneType conversion is 1->0, which requires some special handling
- (not implemented yet) 1->N tuple type conversions require special
  handling.
It's a little bit scary, but on balance doing it the other way would
have its own downsides.
2021-04-05 17:56:35 -07:00
Sean Silva e749074bae Basic infra for annotate shapes and dtypes on arguments.
These allow users to annotate a known "type bound" on the argument,
which can seed shape/dtype inference. We don't rewrite the function
types as part of the import process (it will happen in a
yet-to-be-written pass) because:

1. We would need to interprocedurally rewrite all calls to keep the IR
   consistent. Currently, we have a place after GlobalizeObjectGraph but
   before we convert to tensors where this is convenient to do. Ideally,
   we would do this on the object graph representation.

1. We don't necessarily know that adjusting the function type is a legal
   calling convention change. The pass will have blessed knowledge (by
   the pass pipeline author) that adjusting the argument type based on
   the type bound is safe (which it frequently is).

2. Note that in principle, a type bound could be a fairly general thing
   (such as maximum sizes of dimensions, unions of multiple concrete
   types, etc.). The pass will in principle have logic to interpret the
   type bounds and to determine a suitable "best" (and legal) argument
   type.
2021-04-01 18:40:03 -07:00
Sean Silva 99178a167d Bump llvm-project to 0524a09cc7e1a0797982feacf505825231efbee7
- renames of OwningRewritePatternList -> RewritePatternSet
  - also `insert` to `add`
- RewritePatternSet holds a context now
- memref dialect split from std
2021-03-23 14:29:05 -07:00
Bryce Arden 4591884d06 [refbackrt] Scalar arg support
* Adds f32 scalar argument support across the ABI boundary.
* Adds support for passing input type / shape information
  across the ABI boundary
* Adds support for parsing / creating input FloatAttr's in
  `npcomp-run-mlir`
2021-03-23 13:16:44 -07:00
Sean Silva 703428eff4 Add support for "trailing_" and "out" variants of various ops.
We already had the `promoteTrailingOutTensor` flag, but weren't using
it. A inplaceVariantKernelName flag needed to be added.

This change is a little dissatisfying, as the conversions done by the
RecognizeKernelsPass are currently non-orthogonal. In particular,
`kDropResultAndAliasArg0` probably won't work as intended if mixed with
these (we probably need to promote kDropResultAndAliasArg0 to not be an
arg-level thing anyway, as we have done with promoteTrailingOutTensor).

This involved adding a new op `numpy.overwrite_array`.

```
numpy.overwrite_array %arg2 overwrites %arg0 : tensor<2x3xf32>, !numpy.ndarray<[2,3]:f32>
```

This models the destructive update behavior. Note that in the above op,
we cannot simply RAUW %arg0 with a suitably conveted %arg2 (for example,
%arg0 might have uses that are not dominated by %arg2, or might have an
alias relation with some other array in the program). In general, we
need a pass analogous to "SSA-formation" which knows how to see through
these to uncover an underlying tensor program.

Also, add tanh_out_e2e.py/div_inplace_e2e.py and fix some bitrot in
refjit.py which is my running example I'm trying to get working.
2021-03-19 10:34:50 -07:00
Sean Silva ba482cbb72 Generate Conv2d definition.
We should generally be using torch_signature_ods_gen.py for generating
these. Somehow this one slipped through manually.

There is no `aten::conv2d_overridable` in the op registry AFAICT so I
removed that alias.
2021-03-16 12:39:28 -07:00
Aaron Arthurs 4fd9b4afb5
Import ATen conv2d conversion and test (#180)
* Import ATen conv2d conversion and test

This is a first attempt at expanding ATen-to-TCF conversion for the
conv2d operator. Eventually, this will come in use when lowering a
high-level conv-based model.
2021-03-12 17:21:16 -08:00
Sean Silva 58c7030104 Support multiple instances of a class in GlobalizeObjectGraph.
This happens in practice with e.g. ResNet from torchvision (multiple
instances of the same BatchNorm class).

The key observation is that for this program, and the expected set of
programs, we can convert the program to the same globalized form with a
bit more static analysis and effort to suitably monomorphize the
program. Though what we are doing here is fairly annoying to implement,
it saves any nontrivial later pass from having to do similar analyses
(or worse). E.g. shape inference would need to be object-graph aware,
mutation/lifetime analyses would have to be aware, etc. Additionally, it
would make us front-load what it means to have a !torch.nn.Module type
on an ABI boundary, which we are just not ready to handle.

I'm really, really hoping that in practice we can get away with
this, otherwise it's going to be really rough designing a representation
(and implementing everything to back it) that is convenient to transform
and gracefully scales from full object graph (in the most dynamic case)
down to a fixed set of global slots like we have here (in the most
static case, which we presume a lot of practical programs fall into).

This also involved introducing a
`torch-prepare-for-globalize-object-graph` pass that does a minimal set of
lowerings to simplify the IR into a more orthogonal and analyzable form,
and a `torch-globalize-pipeline` helper.

Recommended review order:
- updated documentation in Passes.td
- new tests in `globalize-object-graph-multiple-instances*.mlir`
- implementation of GlobalizeObjectGraph.cpp
- PrepareForGlobalizeObjectGraph.cpp + prepare-for-globalize-object-graph.mlir
- misc stuff like torch-globalize-pipeline pipeline definition.

With this, we can import, globalize, and inline resnet18 from
torchvision:
https://gist.github.com/silvasean/821586afc19b67d9fb72030b2e0adeb8
2021-03-11 19:21:07 -08:00
Sean Silva 2750d2084c Add prim::device and handle derefining for prim::CallMethod 2021-03-11 14:10:09 -08:00
Sean Silva 01b8a01e1b prim::dtype op 2021-03-11 14:10:09 -08:00
Bryce Arden e7a8fd76e2
[refbackrt] Update Invoke API to support more than just Tensor's (#181) 2021-03-10 15:39:26 -08:00
Bairen Yi 53b01cb9ba Bump llvm-project to e31c77b1827fa4dd3511f21af11cfab18ecf6d38
Signed-off-by: Bairen Yi <yibairen.byron@bytedance.com>
2021-03-10 11:01:16 -08:00
Sean Silva 43dba03afd Properly model "derefinement".
In terms of IR structure, TorchScript allows types to vary in many
circumstances where MLIR requires pointer-identical types. In particular,
it is valid to pass any subtype in place of a type. For example, if an
`Optional[int]` is required somewhere in the IR, it is legal to pass a
value of just `int` (but not the other way around; see
`torch.prim.unchecked_cast`). In effect, every *use* can have a different
type.

We introduce a new op `torch.derefine` that models that impedance
mismatch. This op allows casting a value from one type to a type that it
is a subtype of to model this behavior.

Recommended review order:
- TorchOps.td for new torch.derefine (and updated docs for
  `torch.prim.unchecked_cast`)
- new test code in if.py, loop.py, function-derefine.py
- new code in node_importer.cpp for handling derefinement insertion
- function_importer.cpp and utils changes in torch_to_mlir_utils.cpp

Properly handling derefinement on function boundaries required
relayering the code so that graph_importer.cpp/.h is now
function_importer.cpp/.h because only the `torch::jit::Function`
(actually the `c10::FunctionSchema` it holds) knows the derefined types that are
actually needed at the boundary (see `function-derefine.py` for a test).

Annoyingly, this churns all the functions which are now prefixed with
`__torch__.` but that is more correct anyway (that is their linkage name
in the `torch::jit::CompilationUnit`; the previous `mb.import_function`
was actually buggy in the case of functions calling each other as it
would reference their unqualified name).

With this change, we can import `resnet18` from `torchvision` :)
IR: https://gist.github.com/silvasean/6426a5272d8a6c7caae533fce05ab704
2021-03-03 15:09:44 -08:00