Commit Graph

1688 Commits (638ef1451290d471830e9ad594c0a037dc861811)

Author SHA1 Message Date
Xinyu Yang 431d98b405
[Stablehlo] Add lowering of GridSampler Op (#3084)
Inspired by PyTorch decompositions.py.
See
ec58f1f74e/torch/_decomp/decompositions.py (L3923-L4086)
Only support paddingMode=0 or 1 and interpolationMode=0 or 1
2024-06-07 16:06:07 +08:00
Vivek Khandelwal 72837fbb3d
build: manually update PyTorch version (#3340)
Set PyTorch and TorchVision version to nightly release 2024-05-14.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-06 22:23:40 +05:30
penguin_wwy d59d0b6e5a
[Linalg] Promote type for compare tensor op (#3416) 2024-06-04 16:05:39 -07:00
Vivek Khandelwal 661be2d5b0
[MLIR][Torch] Add TorchToLinalg lowering for AtenAvgPool3dOp (#3030)
This commit also fixes the average pool op' test failing for
OnnxToLinalg lowering.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-04 22:12:34 +05:30
Vivek Khandelwal 35dd8c52cd
[ONNX] Add OnnxToTorch Lowering for MaxUnpool op (#3413)
This commit also adds the Torch declaration for aten.max_unpool2d and
aten.max_unpool3d op. The TorchToLinalg lowering for the same will be
added in a follow-up commit.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-04 21:09:53 +05:30
Yuanqiang Liu 50f7103098
[Stablehlo] support uint8 (#3367)
Support lowering unsigned integer type to stablehlo as discussed in
https://github.com/llvm/torch-mlir/pull/2184.

The things I do in this PR:
1. create `setupBackendTypeConversionForStablehlo()`,
`createFuncBackendTypeConversionForStablehloPass` and
`createFinalizingBackendTypeConversionForStablehloPass`.
2. remove `InferTypeOpInterface` from `torch_c.to_builtin_tensor`,
because it's different result type between linalg backend and stablehlo
backend:
```
// linalg backend
func.func @forward(%arg0: !torch.vtensor<[3],ui8>) -> tensor<3xf32> {
    %c = torch_c.to_builtin_tensor %arg0 : (!torch.vtensor<[3], ui8> -> tensor<3xi8>
    %0 = tensor.empty() : tensor<3xf32>
    %1 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%arg0 : tensor<3xi8>) outs(%0 : tensor<3xf32>) {
    ^bb0(%in: i8, %out: f32):
      %2 = arith.uitofp %in : i8 to f32
      linalg.yield %2 : f32
    } -> tensor<3xf32>
    return %1 : tensor<3xf32>
}
// stablehlo backend
func.func @forward(%arg0: !torch.vtensor<[3],ui8>) -> tensor<3xf32> {
    %c = torch_c.to_builtin_tensor %arg0 : (!torch.vtensor<[3], ui8> -> tensor<3xui8>
    %0 = stablehlo.convert %arg0 : (tensor<3xui8> -> tensor<3xf32>
    return %0 : tensor<3xf32>
}
```
3. fix stablehlo and linalg's conversion
2024-06-04 09:04:59 +08:00
zjgarvey 56d21cba62
Link necessary op interface implementations (#3364)
This patch adds two `memref` passes to `torch-mlir-opt`, which already
occur in the pass pipeline
`torch-backend-to-linalg-on-tensors-backend-pipeline`. Additionally,
necessary op interface external models are included to address issue
#3352.
2024-06-03 19:43:28 -05:00
zjgarvey 8995c90879
[TorchToLinalg] add support for quantized group conv (#3341)
This addresses 7 of the model failures I'm seeing in the test suite. See
[Shark-Turbine issue
#566](https://github.com/nod-ai/SHARK-Turbine/issues/566).

Need the op ```linalg.conv_2d_ngchw_gfchw_q``` to be added upstream
before merging this. See [llvm-project PR #92136
](https://github.com/llvm/llvm-project/pull/92136).

A small additional expansion to operand quantization is included in this
patch to address a model failure that occurs when unblocking the
quantized group convolutions in one of these onnx models.
2024-06-03 21:57:44 +05:30
Vivek Khandelwal 6382dbbcc0
[ONNX] Add OnnxToTorch lowering for SpaceToDepth op (#3393)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-03 20:29:39 +05:30
Xinyu Yang 285b087a5d
[Torch] Emit rrelu and decompose it (#3250)
as title
2024-06-03 19:25:52 +08:00
Xinyu Yang 267052df2a
[Torch] decompose AtenLerpTensorOp (#3251)
as title
2024-06-03 15:25:09 +08:00
Xinyu Yang 23b53050de
[Torch]Support conv_transpose1d and conv_transpose3d (#3286)
1. Support conv_transpose1d and conv_transpose3d
2. Fix bugs of convertTransposedConv func in
lib/Conversion/TorchToStablehlo/Linear.cpp
2024-06-03 15:11:12 +08:00
Rob Suderman 617b00b983
[NFC] Fix member cast change to global for landing collision (#3407)
A PR landed when moving away from a deprecated cast function. Updated
the corresponding lines to pass.
2024-05-31 17:31:24 +00:00
zjgarvey 8952377603
[Onnx] reduce MatMul OpsetVersion to 1 (#3403)
Resolves #3324
2024-05-31 22:17:56 +05:30
Surya Jasper fc100a117d
[MLIR][ONNX] Add OnnxToTorch support for Scatter Op (#3400)
This PR adds OnnxToTorch support for Scatter op
2024-05-31 07:36:48 +00:00
Rob Suderman afca88a058
[NFC] Change to *cast instead of .*cast variants (#3405)
Member casts have been deprecated. Changing over a bunch of the member
cast calls to the global templated variants to remove deprecation
warnings.
2024-05-30 23:45:13 -07:00
Yuanqiang Liu 4e05e2cd1e
[Torch] support recompose of aten.split.with_sizes and aten.tensor_sp… (#3401)
…lit.sections

* support recompose to aten.split.with_sizes and
aten.tensor_split.sections
* fix recompose of aten.chunk
2024-05-31 09:56:47 +08:00
zjgarvey 074098d20c
Modifies onnx resize lowering to fix numerical issues (#3381)
Updates:

- some unsupported modes are now going to report a match failure for
unsupported coordinate transformation modes.
- fixes a bug that was introduced in the last patch for resize (my
bad...)
- uses actual x and y coordinates for computing weights in bilinear
interpolation (rather than eps modified values)
- slightly simplifies the bilinear interpolation payload for readability
and performance
- passes coordinate transformation mode information from an onnx.Resize
op to the mode string for the aten._interpolate op. This allows us to
perform custom logic in the torch->linalg lowering to support
onnx.Resize options without losing the default behaviors of the
interpolate op.
2024-05-30 20:34:37 -04:00
Vivek Khandelwal d7b8f00d01
[ONNX] Add OnnxToTorch Lowering for LpNormalization op (#3397)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-05-30 23:05:26 +05:30
penguin_wwy e4be197efd
[FxImporter] Fix transpose rank zero (#3382) 2024-05-30 14:31:18 +08:00
penguin_wwy 1f544c37d0
[NFC] Remove unused header files (#3386) 2024-05-30 14:30:36 +08:00
Xida Ren (Cedar) 23d2d66a59
Fix error when attempting to read elided onnx constants (#3398)
Co-authored-by: zjgarvey <zjgarvey@gmail.com>
2024-05-29 16:56:23 -07:00
Yuanqiang Liu e0a5adb1db
[Torch] fix aten.linear's decomposition (#3391)
* support aten.linear with more rank.
2024-05-27 15:49:50 +08:00
Yuanqiang Liu 28aeb047c1
[Stablehlo] fix crashing on AtenEmbeddingBagSumExample_basic (#3389) 2024-05-26 12:34:56 +08:00
zjgarvey 27169dcda9
Replace some depreciated uses of cast (#3343)
Contributing towards #3299
2024-05-23 09:01:47 -07:00
Yuanqiang Liu 5bb1a65ec9
[Stablehlo] refactor reduction lowering and support aten.amin (#3383)
* implement detailed lowering template pattern
`ConvertAtenReduceAllDimsOp` and `ConvertAtenReduceKeepDimOp`
* support `aten.amin`'s lowering.
2024-05-23 20:40:20 +08:00
Gaurav Shukla 43f961eca4
[MLIR] Fix 64-bit product during aten.view lowering (#3378)
std::accumulate needs 64-bit init value to perform 64-bit arithmetic on
a list of integers.

Signed-off-by: Gaurav Shukla <gaurav.shukla@amd.com>
2024-05-23 08:59:28 +05:30
Angel Zhang 2e194e13d6
[Torch] Fix bugs for `Torch::AtenOneHotOp` (#3350)
This PR fixes the bugs for `Torch::AtenOneHotOp` by:

1) Using `Torch::kUnknownSize` as the default value for `numClasses` in
   the pattern matching stage in `DecomposeAtenOneHotOp`
2) Adding `AtenIntScalarOp` to the patterns in `TorchToArith`
3) Handling both `int` and `float` types for `off` and `on` values in
`TorchOnnxToTorch` conversion

It also includes:

1) A new test in `TorchToArith/basic.mlir`, for `torch.aten.Int.Scalar`,
and
2) A new test in `decompose-complex-ops.mlir`, for `torch.aten.one_hot`

**Dependencies**

This PR is dependent on #3334.
2024-05-22 17:19:08 +00:00
Yuanqiang Liu f4bfe3f948
Bump llvm and stablehlo (#3377)
* bump llvm to 1e5f29af81a5f6fda308074f6345b9fba4faa71c
* bump stablehlo to c44d9af8d4879adccf1054cb61a53377ae5898cb
2024-05-22 23:28:45 +08:00
Xinyu Yang 4d7cdba4bf
[Torch] eliminate "getWithLeastStaticInformation" in DecomposeAtenTriuOp (#3330)
I am trying to eliminate 'getWithLeastStaticInformation' in
DecomposeAtenTriuOp. Could you provide me with some suggestions?
@qingyunqu @zjgarvey 
See issue https://github.com/llvm/torch-mlir/issues/3312
2024-05-22 23:16:57 +08:00
Angel Zhang 52be4bdc18
[ONNX] Fix bugs for the `onnx.OneHot` operator (#3334)
This commit fixes the bugs for the `onnx.OneHot` operator by:

1) Converting negative indices to non-negative indices
2) Handling both `int` and `float` types for `off` and `on` values
3) Using the correct result type

It also includes a new unit test.
2024-05-22 08:32:00 -04:00
Sambhav Jain 6e485574e5
[Pipeline] Use dedicated simplification pipeline for TorchDynamo frontend (#3376)
Discord Thread:
https://discord.com/channels/636084430946959380/1238330633328005243

## Context: 

[This](https://github.com/llvm/torch-mlir/blob/main/python/torch_mlir/fx.py#L61)
was updated to support e2e tests for the TorchDynamo frontend in
Torch-MLIR, where we run FX decompositions and import the FX IR to
generate Torch dialect, followed by
`torch-function-to-torch-backend-pipeline`, skipping only the shape/type
refinement for now. However, we should be able to skip many of the torch
simplification passes, as depicted in the [frontend
roadmap](https://github.com/llvm/torch-mlir/blob/main/docs/images/roadmap_frontend.png).

Based on IREE's TorchDynamo
[pipeline](https://github.com/iree-org/iree/blob/main/compiler/plugins/input/Torch/InputConversion/Passes.cpp#L29),
the only two passes we seem to require are: `ReduceOpVariantsPass` and
`DecomposeComplexOpsPass`. This is inline with our findings as well
based on initial exploration.

This PR creates a dedicated frontend simplification pipeline for
TorchDynamo / FX Importer which calls only `ReduceOpVariantsPass` and
`DecomposeComplexOpsPass`. We rely on the e2e fx_importer tests to
ensure we're not regressing by removing many of the passes that were
historically needed for TorchScript.

One notable change here is that we do not call the
`LowerToBackendContractPass` anymore, which used to call
`TorchSimplificationPipeline` iteratively until VerifyBackendContract
was clean. Some of this was required for the shape/type refinement to
converge, which seems a non-issue for Dynamo frontend. Do we anticipate
this (the iterative invocation of TorchSimplificationPipeline followed
by VerifyBackendContract) to be worth retaining in the Dynamo frontend
pipeline? If so, I can make those changes, PLMK.
2024-05-22 05:23:18 -07:00
RattataKing fcf48872b3
[ONNX] Implement Softsign op (#3373) 2024-05-21 12:10:26 -07:00
Vivek Khandelwal b870729efe
[torch] Fix `onnx.MaxPool` lowering (#3133)
This commit fixes the onnx.MaxPool op lowering which was lacking the
indices result support.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-05-21 21:05:32 +05:30
zjgarvey 297c270980
onnx.Resize and aten._interpolate : allow n spatial dims. (#3368)
The old lowering only had logic for 2d (i.e. images). this patch allows
interpolation for n spatial dims, which is required for some 3d vision
models such as

- onnx/models/pytorch-3dunet_vaiq_int8

which successfully compiles and runs with this patch.
2024-05-20 13:35:27 -07:00
lialan 99511cef82
Implement `onnx.Hardmax` lowering (#3342)
Co-authored-by: Ubuntu <xunli@wsno1.judsoscro3wupi0qm4bjlj5m3b.bx.internal.cloudapp.net>
Co-authored-by: Hasekawa-Takumi <bewater.private476@passmail.net>
2024-05-20 20:56:24 +05:30
Wu Yuan cc28d566ff
[Stablehlo] Support AtenTrilOp (#3359)
1. lower aten.tril to stablehlo composed by iota, select and so forth
2. add related e2e test cases
2024-05-20 15:49:24 +08:00
Yuanqiang Liu 8814d0ae64
[Torch] emit aten.dot and canonicalize it to aten.matmul (#3361)
* canonicalize `aten.dot` to `aten.matmul`
2024-05-18 22:45:14 +08:00
zjgarvey 6cba93b16e
[ONNX][TorchToLinalg] Add support for dynamic dims in Interpolate lowering (#3351)
Addresses [Shark-Turbine
#196](https://github.com/nod-ai/SHARK-TestSuite/issues/196)

Related tracker [Shark-Turbine
#566](https://github.com/nod-ai/SHARK-Turbine/issues/566)

Related onnx.Resize issues [Shark-Turbine
#616](https://github.com/nod-ai/SHARK-Turbine/issues/616)
2024-05-17 12:18:57 -07:00
Andrew Woloszyn 513d89c16d
Add support for the onnx.SequenceLength op. (#3362) 2024-05-17 12:17:43 -07:00
Andrew Woloszyn 72e38dcbbc
Add support for the onnx.SequenceConstruct op. (#3316) 2024-05-17 22:51:28 +05:30
Xinyu Yang 28193fd985
[Stablehlo]index type use i64 (#3354) 2024-05-16 15:33:23 +08:00
Xinyu Yang 7faba75696
[Torch] Decompose AtenMaskedScatterOp (#3353)
Co-authored-by: Yuanqiang Liu <liuyuanqiang.yqliu@bytedance.com>
2024-05-16 15:27:25 +08:00
Xinyu Yang a9edefb3cf
[Torch] Fix AtenSliceTensorOp::fold (#3345) 2024-05-16 11:42:43 +08:00
penguin_wwy 405f884522
[stablehlo] verify stablehlo backend contract (#3338) 2024-05-16 11:03:43 +08:00
Peiming Liu ccb772cd0f
[sparse] propagate sparsity properly when decompose torch operations. (#3318) 2024-05-15 10:09:27 -07:00
Aaron St George ba32b9cee7
Don't fold `aten.clone` if result isn't same type as input (#3347)
Similar to https://github.com/llvm/torch-mlir/pull/2824, we were seeing
some assertion failures after the addition checks around folders were
tightened up in LLVM: https://github.com/llvm/llvm-project/pull/75887 .
This PR essentially moves the logic that used to be applied at the LLVM
level into the folder, which seems to be the suggested fix.
2024-05-16 00:07:45 +08:00
Yuanqiang Liu 5928f68e60
[Stablehlo] refactor amax, max, max.dim's lowering to stablehlo (#3348)
* not to decompose `aten.amax` on `stablehlo` backend. Because it could
be lowering to `stablehlo.reduce` directly.
* lowering `aten.max.dim` to `stablehlo.reduce apply max` when
`AtenMaxDimOp.getIndices()` doesn't have users. It's more simple.
2024-05-16 00:05:19 +08:00
Xinyu Yang 6b95dd461d
[Torch] Fix PrimNumToTensorScalarOp::fold (#3339)
In constant folding progress, a new constant op will be created
according to the origin op's result type.

See the code in TorchDialect.cpp.

```cpp
Operation *TorchDialect::materializeConstant(OpBuilder &builder,
                                             Attribute value, Type type,
                                             Location loc) {
  if (auto integerType = dyn_cast<Torch::IntType>(type))
    return builder.create<Torch::ConstantIntOp>(loc, cast<IntegerAttr>(value));

  if (auto floatType = dyn_cast<Torch::FloatType>(type))
    return builder.create<Torch::ConstantFloatOp>(loc, cast<FloatAttr>(value));

  if (auto numberType = dyn_cast<Torch::NumberType>(type)) {
    if (auto floatValue = dyn_cast<mlir::FloatAttr>(value)) {
      return builder.create<Torch::ConstantNumberOp>(loc, floatValue);
    } else if (auto intValue = dyn_cast<mlir::IntegerAttr>(value)) {
      return builder.create<Torch::ConstantNumberOp>(loc, intValue);
    }
  }

  if (isa<Torch::BoolType>(type)) {
    return builder.create<Torch::ConstantBoolOp>(loc, cast<IntegerAttr>(value));
  }

  if (isa<Torch::NoneType>(type))
    return builder.create<ConstantNoneOp>(loc);

  if (auto stringAttr = dyn_cast<StringAttr>(value))
    return builder.create<ConstantStrOp>(loc, stringAttr);

  if (auto elementsAttr = dyn_cast<ElementsAttr>(value)) {
    // Only !torch.vtensor can be constant folded. !torch.tensor has
    // non-trivial aliasing semantics which prevent deduplicating it.
    assert(isa<ValueTensorType>(type) && "should be a vtensor type!");
    return builder.create<ValueTensorLiteralOp>(loc, elementsAttr);
  }

  return nullptr;
}
```
So when the op has a tensor result type, it must be "ValueTensorType"
due to the **assert** statement. However, many fold methods in
TorchOps.cpp only have a judgment of "BaseTensorType".
2024-05-15 20:54:19 +08:00
zjgarvey 73b3065a94
[ONNX] Reduces Transpose Opset Version (#3302)
As mentioned in issue #3290 , the difference between onnx.Transpose in
versions 1 and 13 is minimal, and therefore should be supported with the
same conversion pattern.
2024-05-14 21:38:56 +05:30
NeverRaR 26b78285bf
[MLIR][ONNX] Add OnnxToTorch support for GlobalMaxPool Op (#3232)
https://github.com/nod-ai/SHARK-Turbine/issues/658

---------

Co-authored-by: root <root@i32b01216.sqa.eu95>
2024-05-14 15:55:39 +05:30
Archana Ramalingam 20f312853c
[MLIR][ONNX] Add OnnxToTorch support for ReduceLogSumExp Op (#3201)
This commit adds the OnnxToTorch support for ReduceLogSumExp op
2024-05-14 09:54:26 +05:30
zjgarvey 911e723581
Expands Q Commuting Ops (#3332)
After running the model tests in SHARK-TestSuite, I noticed a few model
failures due to half-fusion.

Notably, RDN_pytorch_vaiq_int8 had a depth=5 convolution chain with
multiple AtenViewOp's.
2024-05-13 11:01:53 -07:00
zjgarvey 75d1d72059
Generalize Operand Quantization in FuseQuantizeOps (#3327)
This change enables more customization with operand quantization, and
generalizes the patterns QuantizeOperands and QuantizeTransposeOperands
to QuantizeOperandsPastCommutingOps.

This allows for passing quantization through operations which are
functionally unaffected by quantization, such as view-like ops. The
purpose of this change is to address a myriad of quantization issues
seen in quantized onnx models that have some reshape-like operations
sandwiched in between a dequant and something like a matmul (whose other
operand is immediately quantizable).
2024-05-12 20:49:59 -07:00
Yuanqiang Liu 0b7cbf5e60
[Stablehlo] fix aten.randn's lowering with f32 element type (#3329) 2024-05-11 17:40:04 +08:00
Yuanqiang Liu 5f7cb9e253
[Stablehlo] lowering aten.randn & aten.normal_functional to mhlo.rng … (#3328)
…NORMAL

* split lowering of uniform, randn, normal from Basic.cpp into Rng.cpp
2024-05-11 15:33:37 +08:00
Stella Laurenzo 00efec0b73
[linalg] Implement strict mode lowering for aten.view. (#3319)
* Enables assume_strict_symbolic_shapes on fx_importer imported
programs, indicating strict shape semantics.
* Reworks the view->reshape lowering to take advantage of strict mode
and do one of:
  * Collapse to 0D
  * Flatten/Unflatten when there is an inferred dim.
  * Fallback to tensor.reshape
* Splits some test cases up and adds an attribute to control the old
pattern (so new corners can be tested in strict mode in isolation).
* Dynamic inferred mode needs upstream work to generalize expand_shape
(so that case is suppressed here).
* Deletes the assert from the existing tensor.reshape lowering if strict
shape mode is enabled (since the condition it is dynamically asserting
cannot happen).
2024-05-10 13:45:50 -07:00
Andreas Falkenberg adafd51823
[onnx] Gridsampler addition of nearest mode (#3320)
Added nearest neighbor selection for onnx.Gridsampler
2024-05-10 11:42:10 -07:00
jinchen 4b24909427
Add attributes support for onnx cumsum op (#3241) 2024-05-11 02:09:01 +08:00
NeverRaR 1d4859699b
MaxPool1d lowering to linalg (#3295)
Co-authored-by: root <root@i32b01216.sqa.eu95>
2024-05-10 22:05:26 +05:30
Angel Zhang 261074f594
[ONNX] Handle one-input case for Min ONNX operator (#3326)
This commit handles the one-input case for the "Min" ONNX operator. A
new unit test has also been added.
2024-05-10 22:04:03 +05:30
Angel Zhang 7c289d9522
[ONNX] Handle one-input case for `onnx.Max` operator (#3325)
This commit handles the one-input case for the "Max" ONNX operator. A
new unit test has also been added.
2024-05-10 08:58:46 -07:00
penguin_wwy e0a87e543e
[NFC] Standardize the std::is_same competime expression (#3321) 2024-05-10 17:07:37 +08:00
penguin_wwy 64b59c7fc3
[FxImporter] Eliminate the dependency on the refinement pass (#3309) 2024-05-10 02:44:36 +08:00
penguin_wwy afe87d62b4
[Linalg] [Stablehlo] Promote type for compare scalar op (#3306) 2024-05-10 02:20:06 +08:00
Aart Bik a033bbfe6c
[torch-mlir][sparse] recognize to_dense primitive (#3308)
also maps simply to sparse_tensor.convert
the sparsity types do the rest!
2024-05-08 22:50:17 -07:00
Yuanqiang Liu 5213557b87
[Stablehlo] fix lowering gelu(x, tanh) (#3307)
* lowering gelu("none") to erf
* lowering gelu("tanh") to tanh
2024-05-09 11:39:13 +08:00
penguin_wwy 0f0f57c960
[Linalg] Refactor compare scalar op (#3294) 2024-05-09 10:40:19 +08:00
aldesilv ec6d7aa5d2
OnnxToTorch lowering resize op (#3013)
https://github.com/nod-ai/SHARK-Turbine/issues/358
adds a lowering from onnx to linalg for bilinear and nearest resize with
support for using scales or sizes to get resize shape. uses coordinate
transform half pixel for bilinear mode and asymmetrical for nearest
mode. See
https://github.com/onnx/onnx/blob/main/docs/Operators.md#Resize. Added
two passes -- one for bilinear and the other for nearest.
2024-05-08 21:35:03 +00:00
Benoit Jacob bce800a3f4
Integrate llvm-project at dabdec1001dc368373dd581cf72f37a440873ce3 (#3300)
Co-authored-by: Jacques Pienaar <jpienaar@google.com>
2024-05-08 14:43:06 -04:00
Jiawei Wu 346a536c9f
[Torch Dialect] decompose all index_put-like op to aten.index_put.hacked_twin for stricter semantics (#3071)
This PR decomposes all index_put-like op to aten.index_put.hacked_twin for stricter semantics, i.e., no None index in indices argument.
2024-05-08 22:44:57 +08:00
Xinyu Yang abef114c0c
[torch] emit aten.Softshrink and aten.Hardshrink (#3248)
as title
2024-05-08 15:20:45 +08:00
Vinayak Dev 6f911ba3d7
[torch] Add OnnxToTorch lowering for `onnx.HammingWindow` (#3283)
Adds OnnxToTorch lowering for the `onnx.HammingWindow` op.
2024-05-06 10:21:45 -07:00
Vivek Khandelwal e60160d793
Revert "Decompose AtenNonzeroOp" (#3289)
Reverts llvm/torch-mlir#3281
2024-05-06 09:52:04 -07:00
Vivek Khandelwal 17c3c15131
[ONNX] Add OnnxToTorch lowering for SoftmaxCrossEntropyLoss op (#3278)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-05-06 17:26:32 +05:30
Xida Ren (Cedar) 1af00e6040
Decompose AtenNonzeroOp (#3281)
This fixes some onnx lit tests not lowering to linalg in
https://github.com/nod-ai/SHARK-Turbine/issues/450
2024-05-05 21:59:25 +08:00
Rob Suderman 321b844df7
Revert hyperbolic trigonometric decompositions (#3271)
We should be using the `torch` path and handling decomposition in the
`math` dialect.
2024-05-03 12:06:44 -04:00
Vinayak Dev 67d6a665a4
[torch] Add OnnxToTorch lowering for `onnx.HannWindow` (#3276)
Adds OnnxToTorch lowering for the `onnx.HannWindow` op. Also factors out
common implementation between the window functions.
2024-05-03 12:04:57 -04:00
Archana Ramalingam a46fe2c9db
[MLIR][ONNX] Add OnnxToTorch support for ReduceSumSquare Op (#3188)
This commit adds the OnnxToTorch support for ReduceSumSquare ops.

---------

Co-authored-by: Ubuntu <archana@archana-cpu.judsoscro3wupi0qm4bjlj5m3b.bx.internal.cloudapp.net>
2024-05-02 22:17:45 +05:30
Vivek Khandelwal 0bb62e4347
Revert Onnx.Selu lowering to corresponding Aten op (#3275) 2024-05-02 09:00:24 -07:00
Ze Zhang 11cd7cd9e7
Folder and Canonicalizer for PrimsConvertElementTypeOp and AtenMaxPool2dWithIndicesOp (#3272)
While playing with TorchDynamo on ResNet18. I notice following issues:

- `prims.convert_element_type` can’t be canonicalized even if the input
and the output share the same type

- `aten.max_pool2d_with_indices` is always used instead of
`aten.max_pool2d`, even if the second returned output (indices) has no
user

This PR fixes above issues by adding a folder to the
PrimsConvertElementTypeOp and a canonicalizer to the
AtenMaxPool2dWithIndicesOp


Lit test:

`cmake --build build --target check-torch-mlir-all`

---------

Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
2024-05-02 00:03:41 -07:00
Prashant Kumar 8c48135a42
[linalg] Fix bug for conversion of complex dtype (#3269)
The conversion of complex type wasn't supported or checked; the support
and required tests were added.

Fixes:
https://github.com/iree-org/iree/issues/17226#issuecomment-2087779158
2024-05-01 12:06:53 +05:30
Xida Ren (Cedar) 33eef15e42
Support onnx.If (#2825)
This is probably a decent PR for learning about blocks and regions.

If you're here to learn about that, consider also looking at
lib/Conversion/TorchToSCF/TorchToSCF.cpp

While this doesn't include an e2e test, it is tested downstream in
https://github.com/nod-ai/SHARK-TestSuite/blob/main/e2eshark/onnx/operators/If/model.py

---------

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-04-30 18:36:40 +00:00
Xida Ren (Cedar) 315dc6c3e3
[torch] `aten.eye` should use dynamic dims when no static dims are available (#3202)
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-04-30 17:41:03 +00:00
zjgarvey 72349f7522
[TorchToLinalg] Adds Quantization Support for ConvTranspose (#3240)
I spent a little while debugging numerics issues with some tests similar
to the ones in quantized_models.py, only to find that pytorch's
quantized conv transpose is catastrophically inaccurate. I'll upstream
the issue and only leave the tests here which are of the form quantize
-> dequantize -> op.
2024-04-30 09:23:09 -07:00
Vinayak Dev 05f8b69bf6
[MLIR][TORCH] Add OnnxToTorch support for BlackmanWindow function (#3181)
Implements OnnxToTorch lowering for the BlackmanWindow Function.
2024-04-30 12:21:27 -04:00
Xinyu Yang f32ada993d
[Stablehlo] Improve the lowering of pool op in stablehlo (#3259)
1. Handle case stride == None
2. add avgpool3d maxpool1d  maxpool3d lowering
2024-05-01 00:06:13 +08:00
jinchen fbbad2d81e
Fix onnx atanh lowering (#3264)
iree tests `test_atanh` and `test_atanh_example` passed
2024-04-30 00:50:08 -07:00
jinchen bf04b53b07
Fix onnx asinh lowering (#3263)
iree tests `test_asinh` and `test_asinh_example` passed
2024-04-30 00:49:57 -07:00
jinchen fb499192df
Fix onnx acosh lowering (#3262)
iree tests `test_acosh` and `test_acosh_example` passed
2024-04-30 00:49:44 -07:00
jinchen aa471f1d96
Fix onnx cosh lowering (#3254)
iree tests `test_cosh` and `test_cosh_example` passed
2024-04-30 00:49:29 -07:00
jinchen b64c22cfc1
Fix onnx sinh lowering (#3253)
iree tests `test_sinh` and `test_sinh_example` passed
2024-04-30 00:44:41 -07:00
Rob Suderman db6721084a
Integrate LLVM at llvm/llvm-project@593f6fdcb4 (#3260) 2024-04-29 12:01:40 -07:00
Xinyu Yang 0a5ff68d9d
[stablehlo] Support PrimsCollapseOp and PrimsSplitDimOp in stablehlo (#3230) 2024-04-29 17:40:30 +08:00
Vivek Khandelwal b1e2241479
[ONNX] Fix Onnx.Selu lowering and canonicalizer for IntImplicit op (#3221)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-29 04:00:01 +00:00
Yuanqiang Liu aed2cf3351
[Torch] emit aten.__contains__.str_list and add folder (#3249) 2024-04-29 10:51:17 +08:00
Xinyu Yang 5684dc0441
[Torch] emit aten.celu and decompose it (#3247)
CELU(x)=max(0,x)+min(0,α∗(exp(x/α)−1))
2024-04-28 17:23:40 +08:00
Yuanqiang Liu 46c0f3cad0
[Torch] emit aten.log_sigmoid and decompose it to log(sigmoid) (#3246) 2024-04-28 11:47:43 +08:00
Stella Laurenzo 5d4b803914 [NFC reformat] Run pre-commit on all files and format misc.
This is part 1 of ~3, formatting all miscellaneous text files and CPP files matched by a first run of pre-commit. These tend to be low change-traffic and are likely not disruptive.

Subsequent patches will format Python files and remaining CPP files.
2024-04-27 14:08:09 -07:00
penguin_wwy 6679728c56
Fix deprecated uses of cast/dyn_cast/dyn_cast_or_null/isa (#3243)
Like #3130, gradually replace the deprecated code

https://github.com/llvm/mlir-www/blob/main/website/content/deprecation/_index.md#deprecated
2024-04-27 14:00:56 -07:00
Yuanqiang Liu f173a06fa7
[Torch] emit aten.ne.str and add folder (#3242) 2024-04-28 00:58:50 +08:00
Rob Suderman 9a12a093a6
[onnx] Support `onnx.OneHot` lowering to `torch` (#3196)
[onnx] Support `onnx.OneHot` lowering to `torch`

Leverage the `aten.onehot` implementation along with `aten.transpose`
and `aten.where.scalar`.
2024-04-26 12:08:15 -07:00
Xinyu Yang ac85338491
[Stablehlo] Support AtenPowScalarOp, AtenTanOp, AtenAsinhOp, AtenAcoshOp, AtenAtanhOp, Atan2Op (#3233) 2024-04-26 15:47:44 +08:00
Yuanqiang Liu 634a796933
[Torch] fold aten.log (#3223) 2024-04-26 10:10:02 +08:00
penguin_wwy 122eb69a98
[stablehlo] add aten left/right shift op conversion support (#3234) 2024-04-26 09:20:49 +08:00
Andreas Falkenberg cd33d8b011
[onnx] Update DefaultDomainGtoP.cpp gridsampler (#3228)
Gridsampler
In onnx the interpolation mode is called 'linear' whereas in pytorch it
is called 'bilinear'. This led to the problem that everything other than
'bilinear' was rejected. It needed to be changed to linear.
2024-04-25 18:07:05 -07:00
Archana Ramalingam ac11ec796d
[MLIR][ONNX] Add OnnxToTorch support for ReduceLogSum Op (#3229)
This commit adds the OnnxToTorch support for ReduceLogSum op
2024-04-25 19:37:57 -04:00
Aart Bik 2eac8a992f
[torch-mlir][sparse] sparse tensor dialect is a legal dialect (#3227) 2024-04-26 02:36:42 +08:00
Yuanqiang Liu b0ba3def93
[Torch] support AtenScalarImplicitOp canonicalize with float (#3231) 2024-04-26 02:36:13 +08:00
Aart Bik 4361178caa
[torch-mlir][sparse] recognize sparse tensor conversion (#3226)
Sparse tensor conversions are represented by special aten operators.
This PR ensures the conversions are recognized (instead of failing the
full torch aten lowering to linalg).
2024-04-26 02:32:07 +08:00
Xinyu Yang 7030eacb76
[stablehlo] Support aten.any and aten.all lowering (#3217) 2024-04-25 11:15:52 +08:00
Avinash Sharma 678c03b762
Fix nan issue for fp16 torch.randn/randn_like in ConvertAtenUniformOp (#3184)
For ops that use ConvertAtenUniformOp (e.g. torch.randn/randn_like),
fp16 datatype returns nan values. Trying to lower [this
repro](https://gist.github.com/aviator19941/1c65e658241dea6906ca423f9abaee69)
will result in nan's, this PR fixes the issue.
2024-04-24 12:28:08 +05:30
Yuanqiang Liu fab2696489
[Torch] support aten.trunc (#3219)
decompose `trunc(x)` to `sign(x) * floor(abs(x))`
2024-04-24 14:32:33 +08:00
Xinyu Yang e18bf42d0e
[stablehlo] Support ConstantPadNdOp in stablehlo (#3211)
as title
2024-04-24 14:15:11 +08:00
Phaneesh Barwaria f77d88390a
[onnx] handle dynamic padSize tensor in onnx.Pad (#3214)
- Fix pad size to data_rank for dynamic paddingSize Tensor.
- This fix is in accordance with [input
specification](https://onnx.ai/onnx/operators/onnx__Pad.html#inputs) for
onnx.Pad
- Impl will need to be updated for dynamic padSize when support for
`axes` is added.
2024-04-24 11:31:37 +08:00
Xinyu Yang 42b9eccdb3
[Stablehlo] Fix AtenSumDimIntListOp when dim==None (#3216)
as titile
2024-04-24 11:25:46 +08:00
Xinyu Yang 4da3d714cc
[Torch] Support AtenProdOp on linalg and stablehlo (#3215) 2024-04-24 11:14:04 +08:00
zjgarvey a8ba865fca
[torch] Adds Quantization Support for `aten.relu` (#3177)
A choice was made to quantize the return type of Relu with a scale and
zero point copied from the input's quantization scheme. With this
choice, the torch-to-linalg conversion of quantized Relu essentially
computes max(input, zeroPoint) in the elementwise payload.
2024-04-23 11:01:36 -07:00
jinchen 09d42044b4
Support select_last_index attribute of onnx argmin op (#3212)
The tests listed in https://github.com/nod-ai/SHARK-Turbine/issues/648
all compiled, and the values of results match, but having runtime issue
of dtype mismatch of i/si.
2024-04-23 10:43:38 -07:00
jinchen 61e6312c87
Support select_last_index attribute of onnx argmax op (#3192)
The tests listed in https://github.com/nod-ai/SHARK-Turbine/issues/635
all compiled, but having run issue of dtype mismatch of i/si.
2024-04-23 10:16:08 -07:00
jinchen ddb29c2c02
[onnx] Add OnnxToTorch support for `onnx.ConvInteger` (#3179)
All e2e iree tests compiled, but they have the run issue of mismatch of
dtype like the following
```
expected:
1x1x2x2xsi32=[[[12 16][24 28]]]
actual:
1x1x2x2xi32=[[[12 16][24 28]]]
```
2024-04-23 09:42:02 -07:00
Yuanqiang Liu db3842f2e8
[Stablehlo] support lowering sinh & cosh to stablehlo (#3213) 2024-04-23 19:54:58 +08:00
Xinyu Yang c1967b607f
[Stablehlo] add AtenLog10Op, AtenLog2Op lowering to stablehlo (#3208) 2024-04-23 19:06:55 +08:00
Yuanqiang Liu 1f8123b5f0
[Stablehlo] support unary ops which promote to floating point (#3209)
* promote input to output element-type when lowering to stablehlo, so
that it could satisfy stablehlo's type constraints.
* split promote-to-fp unary ops from fp-only unary ops.
2024-04-23 17:57:12 +08:00
Yuanqiang Liu 797e4cd395
[Stablehlo] lowering asin, acos, atan (#3207)
* lowering asin, acos and atan to chlo ops.
2024-04-23 16:24:53 +08:00
Vinayak Dev cff2f084d4
[torch] Add OnnxToTorch lowering for `onnx.ReduceL2` (#3175)
Adds OnnxToTorch lowering for the ReduceL2 op.
2024-04-23 02:03:05 -04:00
Vivek Khandelwal 3c252cdd44
[onnx] Add `onnx-to-torch` lowering for random ops (#3193)
This commit adds the OnnxToTorch lowering for Onnx's RandomNormal, RandomNormalLike, RandomUniform, and RandomUniformLike op.
2024-04-22 22:28:07 +05:30
Vivek Khandelwal 6abc7371c8
[MLIR][TORCH] Fix OnnxToLinalg lowering issue for Squeeze and Unsqueeze op (#2991)
This commit also cleans up the OnnxToTorch lowering for the Squeeze and
Unsqueeze op and adds the support for handling edge cases.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-22 08:52:42 +00:00
penguin_wwy e5bdd71baf
[Torch] Emit and decompose prims.iota op (#3132) 2024-04-21 19:45:01 -07:00
penguin_wwy a60e84e5ee
[stablehlo] add aten.expm1 op conversion support (#3199) 2024-04-21 19:20:49 -07:00
Rob Suderman 8222637159
[onnx] Extend op version number of `onnx.ScatterElements` (#3195)
Version number was set too high. Lowered to support more cases allows
more tests to pass.

Co-authored-by: Robert Suderman <rsuderman@Roberts-MacBook-Pro.local>
2024-04-21 12:32:18 -04:00
Rob Suderman 733cace1df
[onnx] Fix `onnx.split` by directly handling slicing (#3194)
Previous implementation erroneously mixed up num_outputs with
slice_size. New version correctly computs the slice size and directly
performs slicing rather than leveraging `aten.split.tensor`. This is due
to `onnx` supporting a fixed number of splits making the size
computation more easily computeable when lowering to `aten` rather than
deferring to `aten.split.tensor`.

---------

Co-authored-by: Robert Suderman <rsuderman@Roberts-MacBook-Pro.local>
2024-04-21 12:31:56 -04:00
penguin_wwy b6b01602d3
[stablehlo] add aten.fmod.Tensor op conversion support (#3198) 2024-04-21 08:39:36 +08:00
penguin_wwy ea0ecb67be
[stablehlo] add aten.remainder.Tensor op conversion support (#3197) 2024-04-21 00:03:37 +08:00
Rob Suderman b01245c0e8
[onnx] Fix `onnx.Not` for non-bool inputs (#3187)
Need to perform a bool cast to support `onnx.Not` on non-bool inputs.
2024-04-19 11:32:24 -07:00
Xinyu Yang 790a697245
[Torch] Add folder for AtenIntOp, AtenFloatOp (#3189)
See unit test below:
```
// CHECK-LABEL:   func.func @torch.aten.tensor.float(
// CHECK-NEXT: torch.vtensor.literal(dense<1.000000e+01> : tensor<f32>) : !torch.vtensor<[],f32>
func.func @torch.aten.tensor.float() -> !torch.vtensor<[],f32> {
  %none = torch.constant.none
  %false = torch.constant.bool false
  %float1.000000e01 = torch.constant.float 1.000000e+01
  %67 = torch.aten.tensor.float %float1.000000e01, %none, %none, %false : !torch.float, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[],f32>
  return %67 : !torch.vtensor<[],f32>
}

// CHECK-LABEL:   func.func @torch.aten.tensor.int(
// CHECK-NEXT: torch.vtensor.literal(dense<45> : tensor<si32>) : !torch.vtensor<[],si32>
func.func @torch.aten.tensor.int() -> !torch.vtensor<[],si32> {
  %none = torch.constant.none
  %false = torch.constant.bool false 
  %int45 = torch.constant.int 45
  %67 = torch.aten.tensor.int %int45, %none, %none, %false : !torch.int, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[],si32>
  return %67 : !torch.vtensor<[],si32>
}

```
2024-04-19 22:17:06 +08:00
penguin_wwy 5a98c72c7f
[StableHLO] Fix aten.clamp.Tensor in FxImporter2StableHLO (#3190)
The FX importer will pass static shapes to the Torch dialect, so it
needs to generate a StableHLO that satisfies shape inference.
2024-04-19 17:08:29 +08:00
penguin_wwy 6c4f7deebb
[stablehlo] add aten.clamp.Tensor op conversion support (#3185) 2024-04-19 10:55:27 +08:00
Rob Suderman 0e77de996a
[torch] Add support for `torch.view` with dynamic shapes (#3164)
We can map to `tensor.reshape` for handling multiple output dynamic
shapes. Later we can perform a more complex analysis for indentifying
expand/collapse cases from the tensor.reshape.

Initially we planned to handle this identification at the `torch` level
however it will be easier to handle once converted to core
mlir-dialects.
2024-04-18 11:47:19 -07:00
Rob Suderman 4c21e20caa
[torch] Support rank-0 index for torch index select (#3182)
Need to perform an expand in the case where the indices is rank-0.
2024-04-18 11:32:31 -07:00
Xinyu Yang d4313eed4a
[Torch] Add decomposition of RepeatInterleaveSelfInt Op (#3075)
Decomposition RepeatInterleaveSelfInt with following ops:
```python

def my_repeat_interleave(input, repeats, dim=None):
    if dim is None:
        # Flatten the input and then repeat
        return input.flatten().unsqueeze(-1).tile((1, repeats)).flatten()
    else:
        # Calculate the shape after repeat
        expanded_shape = list(input.shape)
        expanded_shape[dim] *= repeats
        # Repeat the tensor along the specified dimension
        repeat_shape = [1] * (input.dim() + 1)
        repeat_shape[dim + 1] = repeats
        input = input.unsqueeze(-1)

        # Tile and then reshape
        tiled = torch.tile(input, repeat_shape)
        # Rearrange and reshape
        repeated = tiled.reshape(*expanded_shape)
    return repeated

```

I passed the tests of stablehlo and linalg. When testing onnx, strange
things happened.
In torch-mlir's CI **torch_nightly** and my own
environment(torch==2.4.0.dev20240318+cpu), it can **pass the pass**.
In torch-mlir's CI  **torch_stable**, it **failed**.
The test case is `RepeatInterleaveSelfIntNoDimModule_basic`, the result
shape should be [120].
```python
class RepeatInterleaveSelfIntNoDimModule(torch.nn.Module):

    def __init__(self):
        super().__init__()

    @export
    @annotate_args([
        None,
        ([3, 4, 5], torch.float32, True),
    ])
    def forward(self, x):
        return x.repeat_interleave(2)


@register_test_case(module_factory=lambda: RepeatInterleaveSelfIntNoDimModule())
def RepeatInterleaveSelfIntNoDimModule_basic(module, tu: TestUtils):
    module.forward(tu.rand(3, 4, 5))
```
The error log is as follows:
```
  Unexpected outcome summary: (onnx)
  
  ****** Failed tests - 1 tests
      FAIL - "RepeatInterleaveSelfIntNoDimModule_basic"
          @ trace item #0 - call to "forward"
          @ output of call to "forward"
          ERROR: shape (torch.Size([6, 4, 5])) is not equal to golden shape (torch.Size([120]))
```

@rsuderman 
Would you please help me check what's wrong with my PR? Thanks a lot.
2024-04-18 06:27:51 +08:00
Andreas Falkenberg b66eabd492
[onnx][torch][linalg] Implementing align-corner modes for gridsampler (#3171)
Align corner modes which select what the corners mean. 
Either the center of the corner points or the edges of the edge points.

---------

Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
2024-04-17 13:38:19 -07:00
Xinyu Yang d2ba956e69
[Torch] Support Aten_CastLongOp. (#3160)
By canonicalize Aten_CastLongOp into AtenToDtypeOp
2024-04-17 21:58:32 +08:00
zjgarvey 7a1ad0d7c0
[TorchToLinalg] Adds Support for Remaining Quantized Matmul Cases (#3167)
The new cases added for quantized matmuls are:

1. vec-vec
2. vec-mat
3. mat-vec

each of which are now lowered to expand(s), quantized_matmul, and
collapse.
2024-04-16 09:28:28 -07:00
Vinayak Dev a0232e9ebd
[MLIR][TORCH] Add OnnxToTorch lowering for ReduceL1 Op (#3146)
Adds OnnxToTorch Lowering for the ReduceL1 op.
2024-04-16 12:24:46 +05:30
Xinyu Yang ae4724763a
[Stablehlo] Enhance broadcast pattern in matmul Ops (#3161)
To pass test "MatmulStaticBroadcast_basic" in stablehlo:
```python
class MatmulStaticBroadcast(torch.nn.Module):
    def __init__(self):
        super().__init__()

    @export
    @annotate_args([
        None,
        ([4, 1, 6, 7], torch.float32, True),
        ([8, 1, 5, 7, 6], torch.float32, True),
    ])
    def forward(self, lhs, rhs):
        return torch.matmul(lhs, rhs)


@register_test_case(module_factory=lambda: MatmulStaticBroadcast())
def MatmulStaticBroadcast_basic(module, tu: TestUtils):
    module.forward(tu.rand(4, 1, 6, 7), tu.rand(8, 1, 5, 7, 6))
```
2024-04-16 10:10:36 +08:00
zjgarvey 5e564b5864
Adds Some Quantization Support for AtenMatmulOp (#3147)
1. onnx.MatMulInteger now converts to aten.matmul instead of aten.mm
2. aten.matmul, for ranks >=2, now allows quantized inputs and will
lower to linalg::quantized_matmul or linalg::quantized_batch_matmul.
3. added AtenMatmulOp to the FuseQuantizeOps rewrite patters
QuantizeOperands, QuantizeTransposedOperands, and QuantizeAccumulator
4. added several tests, including some to test AtenMmOp with varying
quantization signed-ness.
5. a quantized matmul mat-vec test is added to verify the failure to
lower to linalg; cleaned of out-of-date code related to common
torch-mlir lowering xfails.
6. in debugging a real model with quantized matmuls, I found a bug on
the scalarize-shapes pass which resulted from the aten.full op folder
returning an incompatible result type. This is fixed by the small change
here to
[lib/Dialect/Torch/IR/TorchOps.cpp](https://github.com/llvm/torch-mlir/compare/main...zjgarvey:torch-mlir:MatMulIntegerFix?expand=1#diff-dc8ed165c207918e606490eee3984b1ad51d7034e6aac36fc046bf47f6f03f4f).
2024-04-15 16:06:47 -07:00
IanWood1 5708ee7ec9
Added 2 Ops: Floor divide scalar and Floor divide scalar mode (#3156)
- Added linalg lowering for `AtenFloorDivideScalarOp`
  - Needed `AtenDivScalarModeOp` for the decomp.
- Added linalg lowering for `AtenDivScalarModeOp`
- Moved linalg payload logic to `createDivModePayload()` since the logic
was nearly identical for both `AtenDivScalarModeOp` and
`AtenDivTensorModeOp`. Just a template function
 -  Added `AtenDivScalarModeOp` lowering for stablehlo
 

Pytorch's
[`torch.floor_divide()`](https://pytorch.org/docs/stable/generated/torch.floor_divide.html)
in a previous version (for a reason unknown to me) preformed a
truncation instead of "floor". The already implemented op
`AtenFloorDivideTensorOp` was done before this change. However, this
wasn't caught because our testcases only tested positive floor division.
I changed this to floor as well as adding a few test cases.
2024-04-15 13:45:10 -07:00
jinchen 83cba8c696
[onnx] Support for `onnx.EyeLike` via torch lowering (#2994) 2024-04-15 09:23:26 -07:00
jinchen 859f5d280f
Generalize getting index for onnx compress op (#3150) 2024-04-12 15:18:22 -07:00
zjgarvey 197ef4224b
Avoid Type Mismatch in Slice Folder (#3154)
Fixes issue #3153
2024-04-12 11:43:45 -07:00
Xinan Jiang(姜曦楠) 71d90788d3
[MLIR][TORCH] Support parallel dimemsions expand/collapse (#3051)
This PR support `aten.view` with unique unknown dimension both in input
shape and output shape while the pass convert-torch-to-linalg that
lowing `aten.view` to `tensor.collapse_shape` or `tensor.expand_shape`.

Below is an example
```
func.func @test_reshape(%arg0: !torch.vtensor<[1,?,50,16],f32>) -> !torch.vtensor<[1,?,16],f32> attributes {torch.assume_strict_symbolic_shapes, torch.onnx_meta.ir_version = 9 : si64, torch.onnx_meta.opset_version = 19 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
  %int1 = torch.constant.int 1
  %int-1 = torch.constant.int -1
  %int16 = torch.constant.int 16
  %0 = torch.prim.ListConstruct %int1, %int-1, %int16 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
  %1 = torch.aten.view %arg0, %0 : !torch.vtensor<[1,?,50,16],f32>, !torch.list<int> -> !torch.vtensor<[1,?,16],f32>
  return %1 : !torch.vtensor<[1,?,16],f32>
}
```
2024-04-11 10:43:03 -07:00
Rob Suderman a1fe307a76
[torch] Support implicit batch for index_put (#3128)
If there is only a single value scattered there can be an implicit batch
dimension. This includes a check for the implicit batch dimension when
reshaping the update tensor. It includes an e2e test to verify
correctness.
2024-04-11 10:18:03 -07:00
penguin_wwy d4a30b7e67
Fix deprecated uses of cast/dyn_cast/dyn_cast_or_null/isa (#3130)
We should prefer functional style as the method style is deprecated
https://github.com/llvm/mlir-www/blob/main/website/content/deprecation/_index.md#deprecated
(https://mlir.llvm.org/deprecation/)
2024-04-11 06:47:35 -07:00
Xinyu Yang 308c45e61a
[Torch] Fix PrimListUnpackOp::getCanonicalizationPatterns (#3140)
Fix the case PrimListUnpackOp's result num is not equal to PrimList
length.
See the following example:
```python
    def forward(self, x):
        if len(x.shape) == 5:
            b0, t, c0, h0, w0 = x.shape
            b, c, h, w = torch.mul(b0, t), c0, h0, w0
        else:
            b1, c1, h1, w1 = x.shape
            b, c, h, w = b1, c1, h1, w1
        res = torch.reshape(x, [b, c, h, w])
        return res
```
Without this fix, the following error message will occur:
```
/root/torch-mlir/externals/llvm-project/mlir/lib/IR/PatternMatch.cpp:118: virtual void mlir::RewriterBase::replaceOp(mlir::Operation *, mlir::ValueRange): Assertion `op->getNumResults() == newValues.size() && "incorrect # of replacement values"' failed.
```
2024-04-11 19:48:49 +08:00
Xinyu Yang 6524838bcb
[Torch] Add general AdaptiveAvgPool2dOp decompose support (#3111)
Previously, it could only handle the situations where outputsize == (1,
1) or outputsize == (input_H, input_W). Now it supports all situations
where input_H % output_H== 0 && input_W % output_W == 0
2024-04-11 17:02:59 +08:00
Yuanqiang Liu 88533b1968
[Stablehlo] fix aten.arange's lowering to stablehlo (#3138)
* promote to f64 to do division, avoid division on i64 (floor div)
* refactor torch-to-stablehlo-pipeline
2024-04-11 15:55:56 +08:00
zjgarvey aa5e150313
Adds Some uint8 Quantization Fixes (#3122)
1. Changes the linalg lowering for dequantization ops to always sign
cast to float to prevent misrepresenting uint32 overflow on subtraction
with zero point.
2. Adds a basic quantized model test which only quantizes and
dequantizes and now passes with these changes in linalg and onnx
configs.
3. Changes the aten.mm lowering to allow mismatched quantized types. 
4. If a quantized matmul arg is uint8, we shift by 128 to faithfully
represent the quantization as a signed i8 quantization. This worked fine
in the AtenMmOp lowering, but I'd be happy to move it to a rewrite in
FuseQuantizedOps.cpp instead if that seems more appropriate.

With the changes 3 and 4, the QuantizedMLP_basic and
QuantizedSingleLayer_basic e2e tests now passes with the onnx config.
2024-04-10 12:36:58 -07:00
Xinyu Yang 5eb0cf9104
[Torch] Add decompose of AtenToPrimDeviceOp (#3131)
As device information isn't relevant to torch-mlir
2024-04-10 22:26:48 +08:00
Yuanqiang Liu 8d5e2578b0
[Stablehlo] lowering aten.view to shape.num_elements + stablehlo.comp… (#3125)
…ute_reshape_shape

as that `aten.view` support at most one `-1` in dim list. The original
calculation of `numel` is wrong when there is a `-1` in dim list.
2024-04-09 14:54:57 +08:00
Xinyu Yang 42a16fa912
[Torch] Support Aten_CastFloatOp. (#3115)
By canonicalize Aten_CastFloatOp into AtenToDtypeOp
2024-04-09 11:06:53 +08:00
Xida Ren (Cedar) dd967eb199
[ONNX] Support onnx.LSTM (#2969)
This PR only performs a lit test. In lieu of an e2e test, https://github.com/nod-ai/SHARK-TestSuite/pull/142 makede sure that the lowering works & the numbers check out.

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-04-08 12:23:33 -07:00
Vivek Khandelwal 1d6e4c3d77
[MLIR][TORCH] Add OnnxToTorch lowering for Einsum op (#3117)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-08 22:38:01 +05:30
Xinyu Yang 84c24e5771
[Torch] Support Aten__And__ScalarOp (#3114) 2024-04-08 20:24:17 +08:00
Yuanqiang Liu 2c56ef9252
[Torch Dialect] canonicalize aten.sign to aten.sgn (#3112)
* `aten.sign` is a sub-set of `aten.sgn` (`aten.sgn` support complex
type).
2024-04-08 20:05:42 +08:00
Yuanqiang Liu 43d54efd14
[cmake] link TorchMLIRTorchConversionPasses to TorchMLIRConversionPasses (#3113)
* as that `TorchMLIRTorchConversionPasses` missing dependencies of
`TorchMLIRTorchToStablehlo` and `TorchMLIRTorchToTensor`.
* use `TorchMLIRConversionPasses` instead of scattered targets.
2024-04-08 14:44:34 +08:00
Yuanqiang Liu 498ab997cd
[Stablehlo] lowering aten.log1p to stablehlo.log_plus_one (#3110) 2024-04-07 17:01:58 +08:00
Yuanqiang Liu 0a00f38a7e
[Stablehlo] add stablehlo-aggressive-simplification in e2e test (#3109)
* so that more stablehlo e2e testcases would pass.
2024-04-07 10:48:11 +08:00
Rob Suderman 9d9a05366e
[torch] Fix aten.squeeze lowering to use result shape (#3106)
Squeezes can be ambiguous without the output shape information. For
instance (1, 1, 256) squeezed can be either (1, 256) or (256). We need
to check the resulting shape to know what the shape should look like.
2024-04-04 09:43:12 -07:00
Vivek Khandelwal af54d27820
[MLIR][TORCH] Fix Onnx.TopK lowering (#3103)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 22:12:48 +05:30
Vivek Khandelwal 7e778e2179
build: manually update PyTorch version (#3094)
Set PyTorch and TorchVision version to nightly release 2024-04-01.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 10:48:37 +05:30
Vivek Khandelwal ce7d4f1660
[MLIR][TORCH] Fix Onnx.ReduceSum lowering for failing e2e tests (#3095)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 09:57:19 +05:30
Rob Suderman f97cd4893f
[torch] Improve shape inference for dynamic shapes (#3091)
Shapes can be processed as tensors to represent the set of dimensions.
As reshapes take a list of scalars this can result in a single dynamic
dimension blocking the adjacent static dimensions.

This pass attempts to de-couple tensor computations related to shapes
and propagate values to better support lowering scalar tensor
computations.
2024-04-02 16:19:57 -07:00
zjgarvey 40e762ca42
Adds result types to a prelu decomp (#3098)
This adds explicit result types instead of relying on shape/dtype
computations.

Solves a regression issue with IREE: #3092
2024-04-02 11:41:56 -07:00
Yuanqiang Liu 6cbb2f7ae0
[Stablehlo] add stablehlo-canonicalize-dynamism when lowering (#3097)
so that many stablehlo e2e testcases could pass
2024-04-02 22:47:24 +08:00
Vivek Khandelwal d1f770c620
[MLIR][TORCH] Fix OnnxToLinalg lowering issue for ReduceMean op (#3008)
This commit also cleans up the OnnxToTorch lowering for the ReduceMean
op and adds the support for handling edge cases.

Signed-Off By: Vivek Khandelwal vivekkhandelwal1424@gmail.com
2024-04-02 16:54:04 +05:30
Xinyu Yang ac1cd3d78a
[Torch] Support AtenDivTensorModeOp with static int input for linalg and stablehlo backend (#3088) 2024-04-02 17:28:53 +08:00
Thomas Dietert d2432bbe5a
[MLIR][Torch] Do not convert bias tensor to element type if NoneType (#3072)
The `convertTensorToElementType` function expects it's argument to have
a valid tensor type that is not `Torch::NoneType`. This PR checks that
the bias tensor is not of type `Torch::NoneType` before calling
`convertTensorToElementType` on the bias tensor argument in the
`matchAndRewrite` member function of the `ConvertAtenConvolutionOp`
class.
2024-04-02 14:19:26 +05:30
ptrifunovic98 1c8c47d483
Add complex support for aten.norm and similar operations (#3052)
Add support for complex-type input tensors for norm, vector norm, and
Frobenius norm operations.
2024-04-02 14:03:30 +05:30
zjgarvey 532d297c46
[ONNX] Preliminary Work Towards Supporting QuantizedMLP_basic onnx e2e test (#3089)
See the related issues here:
[SHARK-Turbine#556](https://github.com/nod-ai/SHARK-Turbine/issues/556)

1. Adds uint8 casting to onnx.Cast op
2. Fixes an issue with onnx.DequantizeLinear when the scale comes with
shape [1].
3. Adds support for unsigned types in an AtenItemOp folder
4. Adds a simpler quantized model for easier debugging
5. Adds a fusion pass to convert [quant -> dequant -> transpose -> mm]
patterns to [transpose -> quant -> mm].
6. Moved some xfails that are still not passing, but for different
reasons than onnx.cast failures.
2024-04-01 16:21:05 -07:00
Thomas Dietert 3c33dbd987
[MLIR][Torch] Canonicalize torch.from_i1 and torch.to_i1 (#3067)
When lowering `torch.aten.convolution`, it is expected that the
'transposed' argument is a torch.constant operation. In some cases, the
argument was a `from_i1` operation converting an `arith.constant`
operation into a torch.bool. This is not wrong semantically, but instead
of generalizing the legality of the `torch.aten.convolution` op, we
canonicalize `arith.constant` ops followed by `from_i1` ops to
`torch.bool` ops.

For example:
```
//===-------------------------------------------===//
Legalizing operation : 'torch.aten.convolution'(0x124705b90) {
  %33 = "torch.aten.convolution"(%arg0, %20, %21, %31, %29, %30, %19, %32, %0) : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int) -> !torch.vtensor<[1,10,24,24],f32>

  * Fold {
  } -> FAILURE : unable to fold

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : unimplemented: only constant transposed supported.      <-- Resolved by this PR
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported Scalar to Tensor like op
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported elementwise op
  } -> FAILURE : pattern failed to match

  * Pattern : 'torch.aten.convolution -> ()' {
    ** Failure : not a supported reduce op
  } -> FAILURE : pattern failed to match
} -> FAILURE : no matched legalization pattern
//===-------------------------------------------===//
<stdin>:21:11: error: failed to legalize operation 'torch.aten.convolution' that was explicitly marked illegal
    %17 = torch.operator "onnx.Conv"(%arg0, %0, %1) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 1 : si64, torch.onnx.kernel_shape = [5 : si64, 5 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [1 : si64, 1 : si64]} : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>) -> !torch.vtensor<[1,10,24,24],f32> 
          ^
<stdin>:21:11: note: see current operation: %33 = "torch.aten.convolution"(%arg0, %20, %21, %31, %29, %30, %19, %32, %0) : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int) -> !torch.vtensor<[1,10,24,24],f32>
```

Additionally, we require the canonicalization of `to_i1` operating on a
torch.constant bool to an `arith.constant ... : i1` for the e2e tests to
pass successfully.
2024-04-01 14:25:51 -07:00
penguin_wwy b98f7f75dc
[stablehlo] Reduce unnecessary template specialization code (#3047) 2024-04-01 14:18:49 -07:00
Xinan Jiang(姜曦楠) 1cdae6bc68
[MLIR][TORCH]Add support lowing aten.Int.bool to arith (#3083)
Now there no lowing for `aten.Int.bool` in `convert-torch-to-arith`
pass. this PR add this support.

Below is the UT.
```
func.func @torch.aten.Int.bool(%arg0: !torch.bool) -> !torch.int {
  %0 = torch.aten.Int.bool %arg0 : !torch.bool -> !torch.int
  return %0 : !torch.int
}
```
2024-04-01 10:05:08 -07:00
Vivek Khandelwal 6844c84702
[MLIR][Torch] Fix OnnxToLinalg lowering for AvgPool op (#3076)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-01 22:14:14 +05:30
Gaurav Shukla 129a79417a
[MLIR][ONNX] Fix onnx.gather_nd implementation (#3070)
The indices should be expanded before the torch.gather operation.

Signed-off-by: Gaurav Shukla <gaurav@amd.com>
2024-04-01 20:17:09 +05:30
Xinyu Yang da88efad89
[Torch] Fix bug of DecomposeAtenSelectIntOp (#3087)
Fix bug of DecomposeAtenSelectIntOp. Because it may use resultTy when
resultTy has not been inferred.

```
    auto resultTy = op.getType().cast<BaseTensorType>();
    if (sliceTy.getSizes().size() == resultTy.getSizes().size()) {
      rewriter.replaceOp(op, slice);
      return success();
    }

```

So I add restriction.
2024-04-01 21:25:02 +08:00
Jiawei Wu 76080936d4
[stablehlo] add aten.index_put and aten.scatter_add op conversion support (#3086) 2024-04-01 19:39:49 +08:00
Xinyu Yang 40008b025a
[Torch] Support prelu decomposition (#3069) 2024-03-29 08:05:00 +08:00
zjgarvey c19fc9ba47
[ONNX] Fixes Issue with Dynamic Dims in GlobalAveragePool -> Torch Conversion (#3053)
Two e2e tests (AdaptiveAveragePool1/2dUnitOutputSizeDynamic) were
failing due to numerics. This was as a result of passing -1 as the
kernel size in the lowering for the corresponding onnx op
GlobalAveragePool.
2024-03-28 09:43:09 -07:00
Xinyu Yang e6e7689a24
[Torch] support decompose aten.einsum with ellipsis slicing (#3056) 2024-03-27 12:42:10 -07:00
Xida Ren (Cedar) 5f325749f9
add lowerings for AtenLtIntOp and AtenLeIntOp (#3061)
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-03-27 10:06:43 -07:00
Yuanqiang Liu 0a581a97a7
[Torch Dialect] enhance aten.int.tensor's canonicalize (#3058)
support fold with literal vtensor.  
change it to canonicalize because this pattern will create new op.
2024-03-27 09:51:58 +08:00
Rob Suderman 14b548f968
[torch] Improve shape inference for `torch-to-linalg` path for reshapes (#3055)
Reshaping tensors depend on directly matching individual dimensions to
their corresponding dim in the `torch.view` reshape dimensions. This
involves decoupling dynamic dimensions from their static counterparts
and support cleanup / canonicalization.
2024-03-26 12:41:40 -07:00
Vivek Khandelwal 9ae33e482e
[MLIR][TORCH] Add OnnxToTorch lowering for ops (#3049)
This commit adds the OnnxToTorch lowering for the Mish, Softplus,
HardSwish, Trilu, ThresholdedRelu op

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-03-25 20:29:07 +05:30
schnkmwt 1fcbfa87ec
Implement linalg lowering of diag_embed torch op (#2885)
This PR adds lowering of diag_embed to linalg dilect.
Tracked in https://github.com/nod-ai/SHARK-Turbine/issues/288

---------

Co-authored-by: sachink <sachink@xilinx.com>
2024-03-22 16:32:50 -07:00
zjgarvey 99b3a5f117
Converts all Adaptive Pooling Ops to Linalg (#2808)
The previous conversions for AtenAdaptiveAvgPool1dOp and
AtenAdaptiveMaxPool2dOp are refactored into a general templated
conversion that works for all of the AtenAdaptive...PoolNdOp's.

New support is added for the following ops:

1. AtenAdaptiveMaxPool1d
2. AtenAdaptiveMaxPool3d
3. AtenAdaptiveAvgPool3d

Support is also provided for passing inputs without batch dimensions.
For example, applying adaptive_avg_pool2d to an input tensor of rank 3.

After [pytorch #118162](https://github.com/pytorch/pytorch/pull/118162)
gets down to torch-mlir, I'll add a test for AdaptiveMaxPool1d with
return_indices (which will pass with that upstream fix).

---------

Co-authored-by: James Newling <james.newling@gmail.com>
2024-03-22 11:05:20 -07:00
zjgarvey 6aa481c204
[ONNX] LogSoftmax to Torch (#3024)
This PR adds support for onnx.LogSoftmax both for old versions (<13,
with axis >=0), and new versions (13).
2024-03-22 11:01:39 -07:00
Gaurav Shukla 50635dd509
[ONNX][MLIR] Add support for onnx.gather_nd (#2988)
Signed-off-by: Gaurav Shukla <gaurav@amd.com>
2024-03-22 21:38:39 +05:30
Rob Suderman 3a56714bff
[torch] Fix clamp ranges on quantize_per_tensor on unsigned (#3018)
SExtValue was used for `int` and `uint` clamp values. This caused the
result to always be outputed as `zero`.
2024-03-20 13:37:47 -07:00
Xida Ren (Cedar) cb5cb506df
Fix SCF Forloop fails to convert to linalg when a tensor argument is supplied to the loop block (#3040)
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-03-20 11:04:02 -07:00