Commit Graph

1694 Commits (b790061b69d05dab503ec90ad2b0ed333dd9b62f)

Author SHA1 Message Date
zjgarvey 295bf418a4
Add a canonicalization pattern for `aten.unflatten.int` (#3656)
Addresses an issue in <https://github.com/llvm/torch-mlir/issues/3651>
where some unflatten ops generated from onnx models weren't propagating
static shape information. It may be necessary to add further
optimizations for the more general case when some static information is
present in the unflatten (or possibly reshape/view) op's `sizes` list,
but not reflected in the output shape. These ops will only successfully
infer shapes if the `sizes` list is gotten from a list of constant ints
(with possibly one -1). A common example where this fails is when some
of the `sizes` are determined from `aten.size.int` ops on dynamic
tensors, and other `sizes` are known statically.

This PR includes:
- a canonicalizer for `aten.unflatten.int` which converts to
`aten.unsqueeze` when it is expanding one dim to two, and one of the new
dims is statically 1.
- an improvement to the folder for `aten.__or__.bool` which does not
rely on *both* operands being static.
2024-09-03 16:38:20 -07:00
Ze Zhang b3942ff984
Add canonicalize pattern for aten.mul.int and aten.floordiv.int (#3680)
This PR add `floordiv` to the `PY_BUILTIN_TO_TORCH_OP`. For
`aten.mul.int` and `aten.floordiv.int` ops, we add new Canonicalization
Patterns as follow:

```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.mul.int %1, %const-6
```

Will be replaced by

`torch.aten.mul.int %input, %const-30`


And 

```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.floordiv.int %1, %const-5
```
Will directly return `%input`


This PR also relaxes the `float` type constraint in TorchToTosa for the
`AtenRsubScalarOp` conversion.



To test:

`cmake --build build --target check-torch-mlir-all`
2024-09-03 09:13:59 -07:00
Vivek Khandelwal 567ed44fd0
[MLIR][TORCH] Add E2E support for aten.polar op (#3671)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-09-03 10:51:03 +05:30
jinchen fd759e4b1f
Fix onnx.Gather lowering with dynamic shapes (#3675)
Supports the result with dynamic shape and scalar indices like
```
func.func @test_gather_scalar(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[], si64>) -> !torch.vtensor<[?,?],f32> attributes {torch.onnx_meta.opset_version = 13 : si64} {
  %0 = torch.operator "onnx.Gather"(%arg0, %arg1) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[], si64>) -> !torch.vtensor<[?,?],f32>
  return %0 : !torch.vtensor<[?,?],f32>
}
```

`Torch::AtenSqueezeOp` is referring to the result shape, so it will
failed on lowering if the result shape is dynamic.
2024-08-29 17:02:16 -07:00
lingzhiz1998 5bc59ce1fa
[TorchToLinalg] Support lowering MaxPool3dWithIndices (#3652)
Support torch.MaxPool3dWithIndices lowering to linalg backend.
2024-08-27 14:14:25 -05:00
Xida Ren (Cedar) eb7bf78a9c
Add RestructureNonConstantAxes pass to address reduce op tests failing on non constant axes (#3600) 2024-08-26 14:06:06 -07:00
Felix Schneider 638ef14512
[TorchToLinalg] Use `linalg.broadcast` instead of `generic` for conv bias (#3661)
The current implementation uses a `linalg.generic` to broadcast the bias
tensor for the lowering of convolutions. This is suboptimal for later
pattern matching. This patch changes it to use the respective named op,
`linalg.broadcast`, instead.
2024-08-26 20:29:11 +02:00
Rob Suderman f9766c89f6
[onnx] Handle `torch.aten` for inner product case (#3634)
The following case was failing to lower for einsum. This fixes up the
inner product issue.
2024-08-24 11:41:25 -07:00
Rob Suderman 6cf139687d
[onnx] Support for optional `axis` attribute for `onnx.Pad` (#3635)
The `axis` attribute is optionally available. Added support by computing
the pad based on the axis values.

---------

Signed-off-by: Rob Suderman <rob.suderman@gmail.com>
2024-08-24 11:41:08 -07:00
Rob Suderman b3b8e2e96a
[torch] Fix lowerings of rshift and lshift (#3665)
I missed adding second operand conversion and adding them to the set of
rewrite patterns.
2024-08-24 03:27:18 +00:00
Rob Suderman 9a4c8c606c
[torch] Add `torch.aten.view.dtype` to op list (#3664)
Support dtype conversion between types. This is useful for bitcasting
buffers between differing bit depths.
2024-08-23 19:02:53 -07:00
Phaneesh Barwaria 9a6fe58a02
onnx.MelWeightMatrix Onnx to Torch to Linalg (#3659)
- This PR adds new (and equivalent) more tensorized impl of
MelWeightMatrix which lowers all the way to linalg.
- [Ref Pytorch
Impl](https://gist.github.com/PhaneeshB/4e6dfcded3007b1b686fbe28f07a67cd)
- Thanks to @rsuderman for pointing out the difficulties [earlier
impl](#3503) posed during lowering to linalg and also for providing a
better numpy impl 🙏
2024-08-22 08:55:03 -07:00
Vivek Khandelwal fcc5f444cd
MLIR][TORCH] Fix GroupNorm decomposition by adding shape info (#3658)
This commit adds the shape info for the tensors created during the
decomposition of GroupNorm op.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-08-22 21:20:40 +05:30
lingzhiz1998 7f886cc270
[TorchToLinalg] Support torch.isclose lower to linalg (#3631) 2024-08-21 11:55:54 +08:00
Ian Wood a24114efa3
[TorchToLinalg] remove `extract_slice` grid_sample lowering (#3483)
Instead of using extract_slice for grid sampler, use affine constants to access the X and Y values in the generic op's region.
2024-08-20 14:23:43 -07:00
zjgarvey f66908f190
[TorchToLinalg] address a dtype mismatch in `aten.multinomial` lowering (#3630)
Resolves <https://github.com/llvm/torch-mlir/issues/3628>
Unblocks a compile failure for one of the MiGraphx models
(`AgentModel`).
2024-08-20 15:14:48 -05:00
Vivek Khandelwal 0a86deb59a
build: manually update PyTorch version (#3627)
Set PyTorch and TorchVision version to nightly release 2024-08-18.
This commit also updates the `scaled_dot_product_attention` op. 
A new attribute `enable_gqa` has been added. As of now, only the
default value for the same is supported.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-08-19 12:03:56 +05:30
Rob Suderman 78deb175b3
[onnx] Fix shortcircuit path (#3633)
The implementation was short circuiting the second result. Updated to
guarantee we do not short circuit.
2024-08-16 09:23:47 -07:00
Rob Suderman 3a599bec80
[onnx] Fix onnx.ThresholdedRelu crash (#3638)
Result type was not fetched causing a crash on construction
2024-08-16 09:23:38 -07:00
Rob Suderman f09cb766dc
[onnx] Fix `torch` lowering for determinant (#3639)
The determinant lowering had some extract / insert shape mismatches.
Replumbed shape manipulations to correctly implement the determinant
operation.
2024-08-15 15:41:50 -07:00
yyp0 43e3118eb9
[Stablehlo] use stablehlo specs lowering AtenSliceScatterOp (#3592) 2024-08-15 20:06:29 +08:00
Yevhenii Havrylko 64b0d4aed3
Add missing dependency to TorchMLIRRefBackend target (#3107)
Discovered in https://github.com/llvm/torch-mlir/issues/3104
Most likely when building with stablehlo, while waiting for it missing
dependency was generated to location shared with another dependency.
2024-08-14 23:41:51 +08:00
pkapris-syrmia 23ec5399e5
Implement lowering of aten.atleast_2d (#3546)
This operator is needed to implement aten.vstack, which will be
submitted in a subsequent PR
2024-08-14 18:52:31 +05:30
Branko Trifkovic da877a781e
Added support for integer to complex conversion (#3604) 2024-08-14 18:13:00 +05:30
pkapris-syrmia 10fe5d08d1
Implement lowering for torch.aten.rad2deg (#3586) 2024-08-14 16:37:28 +05:30
Vivek Khandelwal 4a0bed0ce0
[ONNX] Add training mode support for BatchNormalization op (#3597)
This commit extends the OnnxToTorch lowering for BatchNormalization op
for supporting the case when training=True.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-08-14 10:46:38 +05:30
Rob Suderman 2511cf46b4
[onnx] Fix `onnx.RNN` for layout attribute (#3620)
The `layout` attribute was not considered for the `onnx.RNN` operation.
Added support for the attribute to transpose the inputs / outputs of the
RNN when valid.
2024-08-13 14:34:25 -07:00
Rob Suderman af67f9efb0
[onnx] Support integer types for `onnx.Pow` (#3626)
Pow is not support for the `torch` operator. Add casting for integer
types.
2024-08-13 09:39:04 -07:00
Rob Suderman 39307f0462
[onnx] Fix `onnx.Gather` for bad expansion (#3625)
A case where unsqueeze was require was missed causing compilation
failures.
2024-08-13 09:38:55 -07:00
Rob Suderman 9ab93436c4
[torch] Support diagonal `einsum.Diagonal` (#3618)
The einsum lowering was missing the behavior for duplicate indices in
the equation. This amounts to a diagonalization along duplicate pairs of
indices in the equation.
2024-08-13 09:38:43 -07:00
pkapris-syrmia d11d6f6fea
[TorchToLinalg] Fix torch.aten.remainder for negative operands (#3581)
Closes #3575

The PyTorch remainder operator is meant to compute the Python modulus
operator entrywise:

https://pytorch.org/docs/stable/generated/torch.remainder.html#torch.remainder

In python the modulus operator is meant to always return a result with
the same sign as the divisor:

https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations

In other words, torch.aten.remainder should return a Python-style
modulus instead of a C-style modulus. However the remainder operator was
simply translated into arith.ModSI or arith.ModF, which both effectively
compute the C-style modulus. Now the lowering has been modified so that
the modulus operator works properly with negative numbers, both in the
dividend, and the divisor.
2024-08-13 21:17:21 +05:30
Yuanqiang Liu c5b3cf299a
[Torch] emit upsample_nearest1d/2d/vec, and add shape/dtype functions (#3629) 2024-08-13 19:14:24 +08:00
aldesilv a4ba02eef5
[ONNX] add support for tfidfvectorizer (#3553)
1-d/2-d input and output
implemented based on the description and example test cases in
https://github.com/onnx/onnx/blob/main/docs/Operators.md#TfIdfVectorizer
and some notes from

https://github.com/onnx/onnx/blob/main/onnx/reference/ops/op_tfidf_vectorizer.py#L128

---------

Co-authored-by: zjgarvey <zjgarvey@gmail.com>
2024-08-12 18:10:11 -05:00
Rob Suderman d3695a97a0
[onnx] Fix `onnx.Hardmax` lowering to torch (#3624)
The lowering to torch makes assumption about the dimensions / types of
reduce max and onehot. We need to correct for expected torch behavior.
2024-08-12 11:19:02 -07:00
Phaneesh Barwaria 026dfade64
onnx.MelWeightMatrix TorchOnnxToTorch (#3503)
Just uploading what I have till now

[Gist](https://gist.github.com/PhaneeshB/761f75f5522d9f4a40ef949a328e93fe)
of pytorch impl that I'm following to implement the OnnxToTorch lowering

Additional Details - (also pasted as comment in gist)
[Op
Description](https://github.com/onnx/onnx/blob/main/docs/Operators.md#melweightmatrix)
in Onnx Documentation

[Example](https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-93)
Used the same example in this file.
the Expected output is shown in the example

[Reference Onnx
Impl](4c3ed5e08b/onnx/reference/ops/op_mel_weight_matrix.py (L13))
- This is the base for the above code.
2024-08-12 21:18:29 +05:30
Felix Schneider 0314188dbe
[torch] Basic support for per-channel quantized graphs (#3623)
This patch adds basic support for lowering graphs with per-channel
quantization. Per-channel quantized ops have to be excluded from
`FuseQuantizedOps` for now but can be used in QDQ quantized form.

Using this patch, we're able to import and execute (on the linalg
backend) graphs with per-channel quantization applied using the "new"
PyTorch 2.0 Export Quantization.
2024-08-10 15:51:09 +02:00
Rob Suderman 44266ab0c4
[onnx] Support `fp8` for `onnx.QuantizeLinear` (#3619)
We need to directly decompose quantize linear for `fp8` types as the
equivalent torch operations do not support the operation.
2024-08-09 12:32:46 -07:00
Rob Suderman 8358e8c255
[onnx] Add support for `fp8` `onnx.DequantizeLinear` (#3617)
Fp8 needs a slightly different path for dequantization as the `torch`
dequantize operation does not support `fp8` types.
2024-08-08 16:20:53 -07:00
Rob Suderman 880e64bbbb
[onnx] `onnx.Split` may not have `num_outputs` which can be inferred (#3608)
The attribute does not exist in all variants of the operation. It can be
inferred from the number of results so we should just do that.
2024-08-08 16:17:38 -07:00
Rob Suderman fd98476f77
[torch] Unpacking sometimes misses shape inference (#3609)
It is possible that the unpacked tensor does not match the same inferred
shapes. This is pretty common when ingesting form the `onnx` frontend.
2024-08-08 16:17:31 -07:00
Rob Suderman 4350672685
[torch] Add integer support for pooling operations (#3610)
If we pass an integer type to the pooling operation we incorrectly pad
with an integer value with causes downstream compilation failures.
2024-08-07 21:42:10 -07:00
zjgarvey 7f2a17e757
[ONNX] fix padding for `onnx.MaxPool` (#3611)
The saga of aligning onnx and torch padding conventions continues. 

```python
onnx_pads = [low_x, low_y, low_z, high_x, high_y, high_z]
torch_pads = [low_z, high_z, low_y, high_y, low_x, high_x]
```

So not only is the lexicographical ordering hierarchy swapped (low/high
x spatial-dim -> spatial-dim x low/high) but the ordering in the the
spatial-dim specification is also reversed.

This patch properly reverses the pad ordering (and actually uses the
`shuffledPadding` to pad).
2024-08-07 20:34:00 -07:00
Rob Suderman 6c33ab024e
[onnx] `onnx.CenterCropPad` used an incorrect type for toScalar (#3605)
To scalar should have a rank-0 tensor type not rank-1 with length 1.
Changing allows proper compilation.
2024-08-07 20:33:33 -07:00
Rob Suderman 59a4c6fda4
[onnx] Fix transposition code for `onnx.OneHot` (#3606)
The post onehot transposition code was unexercised. Fixed the test and
transformation to check use.
2024-08-07 18:20:26 -07:00
Marius Brehler 341f415b1e
[onnx] Fix lowering `onnx.Shrink` to Torch (#3603)
This fixes the result type of the `torch.aten.lt.Scalar` and
`torch.aten.ge.Scalar` ops created during the lowering of `onnx.Shrink`
to Torch.
2024-08-07 21:25:14 +02:00
Rob Suderman 18139994e8
[onnx] Fix edge condition for `onnx.ReduceMax` (#3598)
For length-0 on `onnx.ReduceMax` the length 0 case was incorrect due to
a copy paste error.
2024-08-07 10:32:28 -07:00
zjgarvey 8d95fe9eeb
[TorchToArith] Add a lowering for `torch.add.float_int` (#3594) 2024-08-07 11:55:27 -05:00
Chi_Liu a51b4e014a
[Torch] Disable 1-d quantized convolution (#3601)
To fix https://github.com/nod-ai/SHARK-Turbine/issues/253#issuecomment-2271815640
Prevent fusion for 1d convolution ops and just do it as an f32 conv
since there isn't a linalg named op for quantized 1-d convolution yet.  
Get 24 onnx eca* models passed in iree-comiple.
2024-08-07 09:01:16 -07:00
Branko Trifkovic 2d6bfb2dec
[LINALG] Added support for conversion from float to complex. (#3595) 2024-08-07 12:36:48 +05:30
Rob Suderman b48e55c2f7
[onnx] Handle negative indices for `onnx.GatherElements` (#3599)
Add a check for negative indices and offset appropriately for
`onnx.GatherElements`.
2024-08-06 18:54:01 -07:00