Commit Graph

852 Commits (ca631a52560acd6d80075034120d9a06ae2cb885)

Author SHA1 Message Date
Vivek Khandelwal f416953600 [MLIR][TORCH] Add TorchConversionToMLProgram and MLProgramBufferize pass
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-12-02 13:20:46 +05:30
Sean Silva 88db99946b [torchdynamo] Use decompositions to support a few ops 2022-12-01 11:25:20 -08:00
Ramiro Leal-Cavazos b4b92c990e
Replace LCG algorithm with squares64 algorithm in AtenUniformOp (#1633)
This commit replaces the LCG algorithm that was being used by the
`TorchToLinalg` lowering of `AtenUniformOp` to generate random numbers
with the `squares64` algorithm, for the LCG algorithm was producing
tensors that were highly correlated with one another.

Squares64 algorithm: https://arxiv.org/abs/2004.06278

Closes https://github.com/llvm/torch-mlir/issues/1608
2022-12-01 08:30:10 -08:00
Ramiro Leal-Cavazos 0983a7f93a
Fix modulus calculation in LCG algorithm of refbackend (#1658)
The current implementation sets the `nextSeed` value to `temp & 127`,
which is wrong. The last step of the LCG algorithm for the multiplier
and increment chosen should be `temp % 2^{64} = temp & (1 <<
63)`. However, because we are dealing with i64 values, the modulus
operation happens automatically, so it is not needed.

See Donald Knuth's values for LCG here:
https://en.wikipedia.org/wiki/Linear_congruential_generator
2022-11-30 08:46:52 -08:00
Abhishek Varma c27c1791f1 [MLIR][TORCH] Add e2e support for `aten.amax` op
-- This commit adds e2e support for `atend.amax` op.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2022-11-30 17:54:37 +05:30
Tanyo Kwok bbcdb38d99
Revert "Decompose torch.slice_scatter (#1622)" (#1659)
This reverts commit f3f2f10030.
2022-11-30 12:47:13 +08:00
Daniel Ellis e2de20575f
Automatically strip overloads for FX-based models. 2022-11-29 22:19:09 -05:00
Ramiro Leal-Cavazos a8cbfff95b
Reduce memory usage of e2e tests by reducing input sizes (#1653)
There are a few e2e tests that take several very large tensors as
input, which leads to the e2e test suite leaking too much
memory. Running things locally resulted in a total memory usage of
12.5 GB when running the suite sequentially on the refbackend.

Many of the tests that take large tensors don't actually need
such large tensors to pass, and some that take several large tensors
as input are just doing the same thing multiple times. This commit
reduces the size of some of the tensors and removes repetitive parts
of tests to reduce the memory usage to a total of 3 GB.
2022-11-29 10:03:36 -08:00
Sean Silva 5a488ff085 Remove deprecated np.bool
`np.bool is bool` and will never be returned as a dtype of an
`np.ndarray`, so we don't need to handle it here.

```
>>> a = np.ndarray([1], dtype=bool)
>>> a.dtype.type is np.bool_
True
```

More info here:
https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-11-29 01:46:21 -08:00
Sean Silva 5a27f826b8 Fix multiprocessing for `--config=torchdynamo`
For reasons that I haven't yet fully tracked down, the TorchDynamo
TestConfig seems to result in tensors that cannot be pickled. They seem
to be holding some sort of weak handles to a `torch.fx.graph.Graph`.

Here is the object structure that leads to the unpickleable object:
```
(<function _rebuild_tensor_v2 at 0x7f56346d56c0>, <class 'torch.Tensor'>, ( 1.0...
{<object object at 0x7f557529e6b0>: <WeakKeyDictionary at 0x7f556a3efbb0>}
{'data': {<weakref at 0x7f5615372ed0; to 'PythonKeyTracer' at 0x7f556a3ee5c0>: _...
<class 'torch.fx.graph.Graph'>
<class 'torch._ops.OpOverloadPacket'>
TypeError("cannot pickle 'torch._C.FunctionSchema' object")
```

Upstream bug filed: https://github.com/pytorch/pytorch/issues/89626
2022-11-28 04:03:11 -08:00
Shivam Gupta 853fd5c965
Fix RuntimeError while running examples/eager_mode.py (#1647) 2022-11-25 10:21:56 -06:00
Vivek Khandelwal d9cbf01d1e Revert "build: update llvm tag to 147fe9de"
This reverts commit e45ad313d4.
2022-11-25 12:41:56 +05:30
Vivek Khandelwal 9cac480a18 Revert "[MLIR][TORCH] Fix indentation and spacing for E2E tests"
This reverts commit 3790a4270e.
2022-11-25 12:41:56 +05:30
Sean Silva 28957adaac [torchdynamo] Initial TorchDynamo support
This adds a basic e2e Config for TorchDynamo using
Linalg-on-Tensors/RefBackend.
But TorchDynamo is pretty orthogonal to
various other pieces, so it should compose nicely with variations like:
- Switching out all the backends (Linalg-on-Tensors, TOSA, MHLO)
- PyTorch functionalization and decompositions
- Taking the example inputs and compiling with all dynamic or all static
  shapes without duplicating tests.

This adds it to the CI, but there are still a lot of XFAIL's.

This also adds a helper `from torch_mlir.dynamo import
make_simple_dynamo_backend` which simplifies some of the steps for
making a Torch-MLIR-based TorchDynamo backend. We include "simple" in
the name because we are going to be exploring various things next from
the long-term roadmap.

The next steps are:
- Burn down all the XFAIL's.
- Start working on the pieces from the [long-term roadmap](https://github.com/llvm/torch-mlir/blob/main/docs/long_term_roadmap.md).
  - Add functionalization/decompositions into the TorchDynamo flow and
    remove reliance on the current Torch-MLIR "frontend".
  - Write a pure-Python direct FX->MLIR importer.
  - Hook up the new PyTorch symbolic shape stuff.
  - Explore PrimTorch decompositions for simplifying backends.
2022-11-24 04:10:25 -08:00
Vivek Khandelwal 3790a4270e [MLIR][TORCH] Fix indentation and spacing for E2E tests
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-24 12:44:43 +05:30
Vivek Khandelwal e45ad313d4 build: update llvm tag to 147fe9de
Summary of changes:
- Update call to `hasNoEffect` utility
- `KDynamicSize` value changed to
  `std::numeric_limits<int64_t>::min()` from `-1`
- Update tags
  llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
  mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-24 12:44:43 +05:30
Tanyo Kwok 14f1260ac4
Add more mhlo basic converters (#1628)
* Add more mhlo basic converters

* remove unused pinnedMemory constraints

* refine naming
2022-11-24 14:28:34 +08:00
Maksim Levental bfcfd60d55
[MLIR][TORCH] Refix differentiable view (#1639)
* `BatchMlpLayerModule_basic` passes

* Fix https://github.com/llvm/torch-mlir/issues/1618 by stripping `requires_grad` from results of view ops.
2022-11-23 15:35:39 -06:00
Tanyo Kwok f3f2f10030
Decompose torch.slice_scatter (#1622)
* Decompose torch.slice_scatter

* fix compilation error

* update file check

* fix ci

* fix i64 torch.tensor dtype
2022-11-23 18:14:12 +08:00
Vivek Khandelwal 68f568b704 [MLIR][TORCH] Add E2E support for prims.convert_element_type op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-22 09:36:36 +05:30
Vivek Khandelwal 55c7e66aa7 [MLIR][TORCH] Fix mean and mean.dim op for large-sized inputs
This commit fixes the aten.mean and aten.mean.dim op decomposition
for supporting large-sized inputs.
This commit also fixes the formatting for the file stats.py

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-22 08:38:51 +05:30
Maksim Levental ed901094c1
Fix https://github.com/llvm/torch-mlir/issues/1618 by stripping `requires_grad` from results of view ops. (#1624) 2022-11-21 19:15:53 -06:00
Sean Silva 22307a1427 Clean up some parts of the test suite
The purpose of the test suite is to accelerate the development of the
compiler. However, we had various tests there that were not expected to
work, had no in-progress work being tested by the test, and nobody was
actively working on them. Having such tests in our test suite just adds
clutter and slows down development on the compiler.
2022-11-21 06:14:31 -08:00
Vivek Khandelwal 25ab8fcc1f [MLIR][TORCH] Fix numel tests for Roll PyTorch action
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-20 19:19:42 +05:30
Vivek Khandelwal 4cbd3927d7 [MLIR][TORCH] Add aten.sort.int op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-20 19:00:41 +05:30
Abhishek Varma 1d949f3ac2 [MLIR][TORCH] Fix aten.upsample_nearest2d op
-- aten.upsample_nearest2d.vec op is not present
   owing to https://github.com/pytorch/pytorch/pull/85638
-- So this commit adds a lowering on aten.upsample_nearest2d.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2022-11-18 13:41:47 +05:30
Sean Silva 39de4d6265 [cleanup] Make diagnostics better
Also remove some unused imports.
2022-11-17 02:09:54 -08:00
Vivek Khandelwal 5f7177da35 [MLIR][TORCH] Add decomposition for aten.var_mean.correction op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-17 13:00:09 +05:30
Sean Silva 3695ca83e6 [torch_mlir.compile] Handle the case of already-scripted models better
Closes #1582
2022-11-16 10:47:13 -08:00
Vivek Khandelwal a1d3afdba9 [MLIR][TORCH] Add E2E support for aten.randint.low op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-16 09:54:18 +05:30
George Petterson 92f385bd9f [MLIR][TORCH] Add E2E support aten.convolution_backward op
This commit adds the decomposition for the `aten.convolution_backward`
and `aten.convolution_backward_overrideable` op.
2022-11-15 07:38:26 +05:30
Gleb Kazantaev 6909eaf7fc
Update TorchMlirBackendImpl Methods (#1580)
* Fix LTC build

* Remove passing test from xfail set
2022-11-14 00:37:49 -05:00
Vivek Khandelwal a558034c1a [MLIR][TORCH] Fix aten.upsample_nearest2d_backward op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-12 00:05:36 +05:30
Vivek Khandelwal d571d050fd [torch_mlir.compile] Fixes issue with the https://github.com/llvm/torch-mlir/issues/1557
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-11 18:05:15 +05:30
Sean Silva cc468d2d16 [cleanup] Be consistent about apostrophe 2022-11-10 07:42:15 -08:00
Daniel Ellis a7ac0def45
Move single-tensor-tuple-return test to mlir unit test.
Also, add multiple return test.
2022-11-10 09:23:53 -05:00
Xiafei Qiu 4f173c6e0f
update llvm tag to a2620e00. (#1567)
- also update MHLO to 57ba12a2(branch greencommit/2022-11-07-a2620e00)
- change -pass-pipeline format to make tests pass.
2022-11-10 18:39:28 +08:00
Sean Silva 64914603fa [torch_mlir.compile] Add support for multiple exported methods
For AoT deployments models often have multiple exported methods.
This patch enables something like this:

```
class TwoMethodsModule(torch.nn.Module):
    def sin(self, x):
        return torch.ops.aten.sin(x)

    def cos(self, x):
        return torch.ops.aten.cos(x)

example_args = torch_mlir.ExampleArgs()
example_args.add_method("sin", torch.ones(2, 3))
example_args.add_method("cos", torch.ones(2, 4))
print(torch_mlir.compile(TwoMethodsModule(), example_args))
```

In the
[long-term](https://github.com/llvm/torch-mlir/blob/main/docs/long_term_roadmap.md#tools-for-advanced-aot-deployments)
we will need to reconcile this with our story for stateful models and the
backend contract being purely functional. For now, this provides some basic
infra that seems harmless. Arguably, we could tighten up the backend contract
even more to only allow a single compiled function which would prohibit this or
require building out a layer above.

Fixes #1557
2022-11-10 02:10:22 -08:00
Jae Hoon (Antonio) Kim 2ec4b06bbb
Remove MakeView from IR Builder (#1552)
* Remove MakeView from IR Builder

* Update PyTorch requirements
2022-11-09 13:46:34 -05:00
Ashay Rane d99b2ddb1b
importer: fix usage after PyTorch update (#1555)
Unless requested otherwise, PyTorch no longer installs most of the
header files under the caffe2 directory (see
https://github.com/pytorch/pytorch/pull/87986).  This breaks our
importer code since we need to use the `MakeGuard()` function to execute
statements in the event of exceptions.

To fix this issue, this patch implements a rudimentary version of
PyTorch's ScopeGuard, where once the class variable goes out of scope,
it executes a predefined method.
2022-11-04 15:02:23 -05:00
Vivek Khandelwal fedf8c0640 [MLIR][TORCH] Add E2E support for aten.upsample_nearest2d_backward.vec op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-04 22:10:07 +05:30
Jae Hoon (Antonio) Kim 0701464c47
Remove view ops from IR builder (#1534)
* Remove view ops from IR builder

* Update PyTorch requirements
2022-10-30 21:42:44 -04:00
Vivek Khandelwal c86177730d [MLIR][TORCH] Add E2E support for aten.fill.Tensor op
This commit adds the decomposition for `aten.fill.Tensor` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-10-30 18:40:47 +05:30
Ramiro Leal-Cavazos b723186983
Remove all but one of valsem ops + move fill.Scalar to elementwise (#1531)
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
2022-10-28 15:06:11 +00:00
Vivek Khandelwal ea602127b6 [MLIR][TORCH] Add E2E support for aten.addcmul_ and aten.addcdiv_ op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-10-28 16:07:50 +05:30
Daniel Ellis 3e199aaf11
Add better error message for single-tensor tuple returns. 2022-10-25 12:48:55 -04:00
Vivek Khandelwal ca87033d2f [MLIR][TORCH] Add E2E support for aten.mse_loss op
This commit adds decomposition for the `aten.mse_loss` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-10-25 21:06:58 +05:30
Jae Hoon (Antonio) Kim 2f300935bf
Reference lazy graph executor (#1507)
* Add LazyGraphExecutor registration

* Update PyTorch version to 1.14.0.dev20221024

Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
2022-10-24 17:15:11 -04:00
Chi_Liu ad6f5848cb
[MLIR][TORCH] Add TorchToTosa lowering for aten.where.self op (#1454) 2022-10-18 09:39:39 -07:00
Ashay Rane a9942f343a
Cache PyTorch source builds to reduce CI time (#1500)
* ci: cache PyTorch source builds

This patch reduces the time spent in regular CI builds by caching
PyTorch source builds.  Specifically, this patch:

1. Makes CI lookup the cache entry for the PyTorch commit hash in
   pytorch-version.txt
2. If lookup was successful, CI fetches the previously-generated WHL
   file into the build_tools/python/wheelhouse directory
3. CI sets the `TM_PYTORCH_INSTALL_WITHOUT_REBUILD` variable to `true`
4. The build_libtorch.sh script then uses the downloaded WHL file
   instead of rebuilding PyTorch

* ci: warm up PyTorch source cache during daily RollPyTorch action

This patch makes the RollPyTorch action write the updated WHL file to
the cache, so that it can be later retrieved by CI that runs for each
PR.  We deliberately add the caching step to the end of the action since
the RollPyTorch action never needs to read from the cache, although
executing this step earlier in the process should not cause problems
either.
2022-10-18 00:42:42 -05:00
Ramiro Leal-Cavazos 82a3860e25
build: update llvm tag to 4546397e (#1502)
This commit makes the following changes needed to update bump LLVM:

- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)

Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>

Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
2022-10-18 04:22:53 +00:00
Ramiro Leal-Cavazos 86095dd432
Replace linear transformation with `low` and `high` in test inputs (#1485)
This commit replaces test inputs that were being linearly transformed
by multiplying and adding/subtracting to the input tensor with inputs
that use the `low` and `high` keyword arguments instead.
2022-10-14 18:52:07 +00:00
Gleb Kazantaev bdb5083d33
New ops support & enhancements (#1494)
* New ops support & enhancements

* Enabled xfail ltc tests
2022-10-14 10:28:21 -04:00
Prashant Kumar 3a2cd23380 [LINALG] Add lowering for aten::round op.
-- Added the lowering for aten::round op.
-- Added the folding for integer cases.
2022-10-13 02:41:26 +05:30
Sean Silva c8280d67bd Remove the heavydep tests
We originally added these to help bring up more complex models with
heavier dependencies. However, over time it has become clear that these
models usually require more than just heavier dependencies -- they often
require a nontrivial amount of "one-off" code to extract the relevant
parts of the model and compile them. This is not a good fit for a
component in the core Torch-MLIR repo.

However, in the community, nod.ai has developed the ["Shark
Tank"](https://github.com/nod-ai/SHARK/tree/main/tank) which has all the
appropriate code to wrangle these models and organize them. We intend to
more heaviliy lean on that as a community and improve the symbiosis
there to serve the role that these heavydep tests were meant to play.
2022-10-12 05:19:36 -07:00
Sean Silva 6403c0e56f torch_mlir.compile: allow custom backend_legal_ops set
Allow customizing `backend_legal_ops` for "torch" output type, since we
don't know which backend will be used (it might be a custom backend).
We don't allow customizing the `backend_legal_ops` for the other output
types (Linalg, TOSA, MHLO) since those backends control their set of
legal ops directly.

Fixes #1418
2022-10-12 04:21:22 -07:00
Abhishek Varma 61db1b5c4d
[MLIR][TORCH] Add e2e support for `aten.Mish` op (#1470)
-- This commit adds e2e support for `aten.Mish` op.
-- `aten.Mish` op is decomposed as following :-
    Mish(x) = x * Tanh(Softplus(x))

Signed-off-by: Abhishek Varma <avarma094@gmail.com>

Signed-off-by: Abhishek Varma <avarma094@gmail.com>
2022-10-11 14:03:10 -07:00
Jae Hoon (Antonio) Kim 3e08f5a779
Fix `fromIntArrayRef` call (#1479)
* Fix fromSymint call

* Update PyTorch requirement

* Re-enable LTC
2022-10-11 13:29:07 -04:00
Ashay Rane aefbf65e27
Disable LTC and update PyTorch (#1472)
* build: disable LTC again so that we can bump PyTorch version

When built using PyTorch's master branch, the LTC code has been failing
to build for a few days.  As a result, the PyTorch version referenced by
Torch-MLIR is stalled to the one from October 4th.

In an effort to advance to PyTorch version, this patch disables LTC, and
a subsequent patch will advance the PyTorch version.

* update PyTorch version to 1.14.0.dev20221010

Also disables the `UpSampleNearest2dDynamicFactor_basic` e2e test, since
the (PyTorch) oracle differs from the computed value for both the
refbackend and the eager_mode backends.
2022-10-10 23:05:40 -05:00
Gaurav Shukla da90a25f90 [MLIR][TORCH] Add E2E support for `aten.[div.int|bitwise_or.Tensor]` ops
This commit adds lowering of `aten.div.int` and `aten.bitwise_or.Tensor`
ops. Both these ops are required in order to support bloom_560m model.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-10 22:28:51 +05:30
Vivek Khandelwal d3cc3f1aff [tosa] Add lowering for aten.to.dtype and aten._to_copy op
This commit adds the TorchToTosa lowering for `aten.to.dtype` and
`aten._to_copy` op.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-10-06 12:00:25 +05:30
Daniel Ellis e7b2b84a66 Update torch-mlir-opt error message. 2022-10-05 15:02:10 -04:00
Jae Hoon (Antonio) Kim c57d801260
Fix functionalize_aten_op calls for symint ops (#1459)
* Fix functionalize_aten_op calls for symint ops

* Update PyTorch version
2022-10-05 10:23:48 -04:00
Gleb Kazantaev 708fa346a6
Fix Base Lazy Backend Type Conversion (#1412)
* Fix c10::prim::Constant conversion; Added CAPI for passes; Added passes to base lazy backend

* Update ivalue_importer to use ImportOptions; Added tests for non-value/value tensor types

* Added tests for scalar Constant import; Updated MB::importFunction to use ImportOptions

* Test updates

* Move back module variable name

* Remove RefineTypes from TorchMlirLoweringContext::Build()

* Rename pass; Remove passes from base lazy backend

* Rename pass to VerifyBackendContractPass

* Aligned cmd pass name; Fixed TorchConversion passes registration
2022-10-04 15:53:28 -07:00
Daniel Ellis 2ba71af651 Add support for mv decomposition. 2022-10-04 11:34:45 -04:00
Prashant Kumar 6777a9484d [LINALG] Add lowering for the aten.upsample_nearest2d op. 2022-10-04 17:20:29 +05:30
Daniel Ellis 4d47f1671a Reject dictionary inputs when tracing.
The underlying error message was misleading.  See https://github.com/llvm/torch-mlir/issues/1425
2022-09-30 16:02:35 -04:00
AmosLewis 940959589b [MLIR][TORCH] Add Byte and Char Dtype support 2022-09-30 13:19:31 +05:30
Ashay Rane 0b46462528
Miscellaneous fixes for Windows builds (#1376)
* test: allow spaces in path to Python executable

On Windows, the path to the Python binary may contain spaces, so this
patch adds quotes around the path to the python executable.

Thanks to @sstamenova for suggesting the fix!

* python: remove header file that causes Windows build failures

Similar to https://reviews.llvm.org/D125284, we can safely remove this
header file without affecting the build on either Linux.  It is
necessary to remove this header file on Windows builds since otherwise
it causes build errors.

* python: drop `TORCH_API` from function defined in Torch-MLIR

`TORCH_API` should apply to functions that are either exported by
libtorch.so or ones that are imported from libtorch.so by its downstream
consumers (like Torch-MLIR).  Neither case applies to the
`importJitFunctionAsFuncOp()` function, since it is defined in
Torch-MLIR (and thus outside libtorch.so).  This patch fixes the problem
by dropping `TORCH_API` from that function's declaration.

* python: make output of class anotations deterministic

The `class-annotator-repr.py` test checks for class annotations in a
specific order, but prior to this patch, the order was
non-deterministic, since the code iterated on an _unordered_ map.

This patch makes the iteration order deterministic through two changes:
1. using a sorted map
2. using the class qualified name instead of the address of the class in
memory

* test: use Python3_EXECUTABLE as interpreter path for consistency

This ensures that tests use the Python3 version that was detected using
CMake, instead of whichever python version that happens to be in the
PATH variable when invoking the test.

* test: fix RUN string

The parenthesis syntax does not run on Windows (the shell interprets the
`(` character as part of the path).  Moreover, the ODR violation in the
comment no longer seems to apply.

* python: port parallel test framework to Windows

Since Windows does not support `fork` natively, Python's
`multiprocessing` module needs to use `spawn` on Windows.  However, to
use `spawn`, the multiprocessing module serializes (or pickles) the
worker function and its arguments.  Sadly, the multiprocessing module
(both the default one in Python and the one that is extended in PyTorch)
is unable to serialize lambda functions (see
https://stackoverflow.com/a/19985580) for detals.

Unfortunately, given how our tests are structured, we require that the
function under test is passed as an argument to another function, so we
cannot sidestep our use of lambda functions.

To resolve this problem, this patch makes use of the `multiprocess` and
`dill` Python modules, which together offers a multiprocessing mechanism
that can serialize lambda functions.  The multiprocess module also
offers a process pool, which simplifies the code for our parallel
testing framework.
2022-09-29 12:07:43 -05:00
Vivek Khandelwal 6db513c51d
[tosa] Add support for some cases of aten.broadcast_to op (#1429)
This commit adds support for TorchToTosa lowering of
`aten.broadcast_to` op for cases:
1.) When the rank of input and output tensor is equal.
2.) When the rank of input tensor is zero.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-09-29 09:40:56 -07:00
Jae Hoon (Antonio) Kim fa5a8e21a3
Propagate parameter names to TorchMlirComputation (#1420)
* Propagate parameter name to MLIR

* Add TorchMlirNode Constructor Hook

* Make func_op mutable

- Purpose of this is to allow modification of func_op by subclass
  backend

* Clean up unnecessary changes

* Remove unnecessary attribute case

* Address PR comments
2022-09-29 11:43:39 -04:00
JakopinA 8ef0c874c2
Implement Expand/Collapse Functionality for Aten.View (#1353) 2022-09-27 11:08:14 -07:00
武家伟 c03aa63325
[MLIR] Add canonicalizer for aten.slice.t op (#1413)
* [MLIR] Add canonicalizer for aten.slice.t op

* Add mlir tests and strength the canonicalizer

* rename variable

Co-authored-by: Vremold <xremold@gamil.com>
2022-09-26 14:35:50 -07:00
Jae Hoon (Antonio) Kim 3e27aa2be3
Fix as_strided/slice symint (#1401)
* Fix as_strided symint

* Re-enable LTC tests

* Re-enable LTC

* Add hardtanh shape inference function

* Fix slice symint
2022-09-26 12:16:49 -04:00
武家伟 ab7aa01b1e
[MHLO] Add torch-to-mhlo e2e support for aten.gather op (#1410)
* Add torch-to-mhlo e2e support for aten.gather op 

* Add more e2e tests for torch.aten.gather op
2022-09-25 22:07:46 +08:00
Vivek Khandelwal bc11e1aba6 [tosa] Add "-tosa-to-tensor" pass in the lowering pipeline
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-09-24 10:03:07 +05:30
Tanyo Kwok 72e422b589
Add relu6 and binary broadcasts (#1408)
* Add relu6 and binary broadcasts
2022-09-23 20:39:15 +08:00
Sean Silva 7a77f9fe3d Add a way to turn off crashing tests
This adds a very long and obnoxious option to disable crashing tests.
The right fix here is to use the right multiprocessing techniques to
ensure that segfaulting tests can be XFAILed like normal tests, but we
currently don't know how to implement "catch a segfault" in Python
(patches or even just ideas welcome).

Motivated by #1361, where we ended up removing two tests from *all*
backends due to a failure in one backend, which is undesirable.
2022-09-23 05:01:39 -07:00
Vivek Khandelwal 5090ac9359
[MLIR][TORCH] Add a test for sum.dim_IntList op working for tosa (#1387)
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>

Co-authored-by: Suraj Sudhir <16977902+sjarus@users.noreply.github.com>
2022-09-20 11:38:09 -07:00
Vivek Khandelwal 1ffd42bbde
[MLIR][TORCH] Add TorchToTosa lowering for aten.broadcast_to op (#1386)
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-09-20 10:04:51 -07:00
武家伟 0e2e94d542
Add torch-to-mhlo e2e support for AtenArangeStartStepOp (#1385)
Co-authored-by: Vremold <xremold@gamil.com>
2022-09-20 22:31:24 +08:00
Jae Hoon (Antonio) Kim 8967463980
Fix symint ops and blacklist `lift_fresh_copy` (#1373)
* Add symint to native functions yaml

* Re-enable LTC

* Fix new_empty_strided and narrow_copy
2022-09-20 10:16:04 -04:00
武家伟 4f3cd236dd
Strength the shape inference for aten.arange-like op (#1367)
Strength the shape inference for aten.arange-like op by
1. registering aten.sub and aten.ceil.Scalar op and design folders for them.
2. register a new constant-like op: Torch::ConstantNumberOp and design canonicalizer for it.
2022-09-20 12:40:19 +08:00
Vivek Khandelwal 04f3a4ffce [MLIR][TORCH] Add support for bool element type for aten.sum[.dim_IntList] op
This commit adds bool element type support for `aten.sum` and
`aten.sum.dim_IntList` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-09-17 09:18:34 +05:30
Ashay Rane 1895b581c4
shape-lib: generate string as multiple lines to work with MSVC (#1370)
As @oroppas identified, literal strings that are over 16,380 characters
cause the MSVC compiler to throw an error (C2026), eventually causing
the Windows build of Torch-MLIR to fail because the length of the
generated MLIR for the shape library crosses the allowed threshold.

This patch fixes the problem by making the Python script generate one
literal string per line to satisfy the MSVC compiler.

Thanks to @oroppas for the bulk of the effort required to resolve this!
2022-09-16 15:16:01 -05:00
Ashay Rane 2bb5f4d8fe
build: update llvm tag to 4d4ca6c9 (#1359)
Summary of changes:
 - Updated emitAccessorPrefix since the default value has changed
   (https://reviews.llvm.org/D133179)
 - Updated RefineTypes pass since Lattice::isUninitialized() is removed
   (https://reviews.llvm.org/D132800)
 - Updated MHLO tag so that it builds with the updated LLVM tag
 - Disabled two tests that cause segfaults in the TOSA backend (see Issue
   #1361)
2022-09-13 21:24:43 -05:00
gpetters94 48418b9c22
Fold away type_as (#1358) 2022-09-12 18:59:12 -04:00
Vivek Khandelwal 71b1f0dd7a [MLIR][TORCH] Add E2E support for aten.index.Tensor_hacked_twin op
This commit adds lowering of `index.Tensor_hacked_twin` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-09-12 21:47:18 +05:30
George Petterson a12b9c4492 Add lowering for aten::cumsum 2022-09-12 09:28:07 +05:30
Vivek Khandelwal 326f21229e [MLIR][TORCH] Fix shape calculation for aten::pow.Tensor_Tensor op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-09-08 21:14:12 +05:30
Vivek Khandelwal e35741fb1d [MLIR][TORCH] Add E2E support for aten.bitwise_not op
This commit adds lowering of `aten.bitwise_not` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-09-08 17:52:12 +05:30
Vivek Khandelwal 7dfadc2498 [MLIR][TORCH] Add E2E support for aten.lift_fresh_copy op
This commit adds lowering of `aten.lift_fresh_copy` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-09-08 12:32:16 +05:30
Vivek Khandelwal c19fccfca2 [MLIR][TORCH] Add E2E support for aten.pow.Tensor_Tensor op
This commit adds lowering of `aten.pow.Tensor_Tensor` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-09-08 10:01:42 +05:30
武家伟 6a1893a517
[MLIR][MHLO] Add AtenFrobeniusNormDimOp and add its conversion pattern to MHLO and linalg (#1306)
* Add aten.frobenius_norm.dim op and init its conversion pattern to linalg and MHLO, 
* run symbolic-shape-optimization before hlo-legalize-to-linalg to fit more mhlo e2e tests.
2022-09-08 10:15:36 +08:00
Ashay Rane 93f7c0ceb5
build: update llvm tag to d2613d5b (#1343)
Summary of changes:
 - Update the dataflow analysis in RefineTypes.cpp
 - Add tosa-to-arith pass after tosa-to-linalg pass, since
   tosa-to-linalg (and canonicalizations) can produce tosa.const() ops
 - Fixed warning about not making `matchAndRewrite` as override
2022-09-07 14:35:14 -05:00
Gaurav Shukla 99093d0623 [TORCH] Add decomposition of `aten.linear` op
This commit adds decomposition of `aten.linear` op. Due to limited
support at tosa backend in case of dynamic dimensions, this
decomposition is currently disabled for tosa backend.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-07 16:58:27 +05:30
Quinn Dawkins cc86cc0f02
Revert "Implement Non-Expand/Collapse Functionality for Aten.View (#1309)" (#1347)
Reverting commit a6a48ba233 to revise unit tests and address dynamic shape handling based on comments in #1309
2022-09-07 01:38:11 -04:00
JakopinA a6a48ba233
Implement Non-Expand/Collapse Functionality for Aten.View (#1309)
Focuses on statically sized cases such as [2, 3] -> [3, 2].
2022-09-06 14:46:04 -04:00
Tanyo Kwok 512f2d9c23
Add decomposition to aten.native_layer_norm (#1332)
* Add decomposition to aten.native_layer_norm

* fix ci error
2022-09-02 09:29:22 +08:00
Sean Silva 0f40d98009 Ensure that tests have unique names 2022-08-29 16:25:23 -07:00
Sean Silva 079bff33f1 Sort tests before anything else.
In the sequential case we weren't sorting, which was confusing.
2022-08-29 16:23:56 -07:00
Sean Silva e16b43e20b Remove "torchscript" association from the e2e framework.
We use it for more than TorchScript testing now. This is a purely
mechanical change to adjust some file paths to remove "torchscript".

The most perceptible change here is that now e2e tests are run with

```
./tools/e2e_test.sh
instead of:
./tools/torchscript_e2e_test.sh
```
2022-08-29 14:10:03 -07:00
Sean Silva a507ae498a Avoid cascading failures when compiler crashes
Change logic so that we never run the multiprocessing codepath with only
1 worker. That configuration was causing all subsequent tests to
spuriously fail if one test failed with a crash (this was easy to see
after sorting the tests). That configuration was the one used by the CI.

Also, sort tests to make output nicer.
Also, make verbose mode more verbose so that it is easy to see in `-s`
mode which test is crashing.
2022-08-26 16:54:00 -07:00
Jae Hoon (Antonio) Kim 8e880a2d00
Fix symint related functionalization ops (#1289)
* Fix symint related functionalization ops

* Remove zeros xfail from LTC tests
2022-08-26 16:13:28 -04:00
Ramiro Leal-Cavazos e153694c94
Add TestUtils.randint + replace torch.randint with tu.randint (#1276)
This commit adds a method to `TestUtils` that generates random integer
tensors with a similar interface to the `TestUtils.rand`. This commit
also replaces with `tu.randint` all test inputs generated with
`torch.randint`.
2022-08-26 08:50:16 -07:00
Henry Tu e869e68559
Fix LTC lib_torch_mlir_ltc.so import error (#1283)
* Build LTC to _mlir_libs directory

* Update CMakeLists.txt
2022-08-25 18:25:01 -04:00
Henry Tu a1ace0657d
Revert updating mlir_native_functions.cpp signature (#1281)
* Revert updating mlir_native_functions.cpp signature, due to a7edf71360

* Restored NewZeros to LTC XFAIL set
2022-08-25 13:00:33 -04:00
Henry Tu e2f862cb85
Fix LTC build warnings (#1272)
* Resolved Wunused-variable

* Fix Wunneeded-internal-declaration

* Address review comment

* Update autogen_ltc_backend.py

* Update mlir_native_functions.cpp to work with updated PyTorch

* Remove NewZeros from LTC XFAIL set
2022-08-24 15:04:28 -04:00
gpetters94 f012279fa2
Add transposed case for at::convolution (#917)
Also adds a decomposition for aten::conv_transposed2d.input
2022-08-24 12:19:35 -04:00
Sean Silva d7d67979b2 [cleanup] Change OutputType enum values to strings
The use of numbers was arbitrary and was preventing the enum values from
being put in the natural order.
2022-08-23 17:59:39 -07:00
Tanyo Kwok 3d0e18bbe7
Add decomposition for aten.roll (#1170)
* Add decomposition for aten.roll

* add e2e unittest

* refine type of torch.roll

* fix aten::cat output type
2022-08-24 08:36:05 +08:00
Tanyo Kwok 2374098d71
[MHLO] Init end to end unit tests (#1223) 2022-08-23 16:47:21 +08:00
Vivek Khandelwal 8cad02f87e [MLIR][TORCH] Add torch.Device type to backend contract scalar types
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-08-23 10:50:09 +05:30
Tanyo Kwok 9176b5ed29
Add decomposition for aten.flatten.using_ints (#1161) 2022-08-23 11:52:54 +08:00
Sean Silva 01290d134a Add a way for backends to control which ops are legal for them.
We were already hitting many cases where backends different in terms of
the legal ops that they wanted. This caused unnecessary coupling between
the backends. Examples:
- https://github.com/llvm/torch-mlir/pull/1161
- https://github.com/llvm/torch-mlir/pull/862

This PR centralizes all compilation to go through `torch_mlir.compile`
so that we can keep the logic centralized there. We should move these
lists closer to each backend. Especially cases like
https://github.com/llvm/torch-mlir/pull/862 where blocking a
decomposition is necessary to avoid a crash emphasize that the set of
decompositions is tightly coupled to the backend, and should be
"controlled by the backend" and not something arbitrarily tweakable.

Also:
- Fix a small bug in the way we passed through the backendLegalOps
  option.
- Add better error messages in `torch_mlir.compile` for import errors.
2022-08-22 14:16:13 -07:00
Alex Tsao c38308f3ef
Add lowering for _convolution.deprecated (#1259)
* Add lowering for _convolution.deprecated
2022-08-22 11:17:36 +08:00
Henry Tu ba17a4d6c0
Reenable LTC in out-of-tree build (for real this time) (#1205)
* Fix OOT LTC CI build failure

* Disable LTC during macOS package gen

* Add more details about static TorchMLIRJITIRImporter library
2022-08-19 15:25:00 -04:00
Vivek Khandelwal 65d811e267 [MLIR][TORCH] Fix dynamic cases for aten.index.Tensor 2022-08-19 12:13:20 +05:30
Ramiro Leal-Cavazos f07f7d20f9
Clean up shape functions that use `sum_mean_dim` (#1217)
I recently fixed the handling of the `dim` argument in
`sum_mean_dim` (59fccab857). Therefore,
the checks that the `dim` input is `None` or `[]` are no longer needed.
2022-08-18 08:23:43 -07:00
Quinn Dawkins 85f383ce0b
Bump the shape lib to match the upstream functions currently in PyTorch (#1236)
Bumps the shape library:
 - Updates the function signature for aten.arange.start_step
 - upstream_shape_functions.mean_dim -> upstream_shape_functions.sum_mean_dim
2022-08-17 00:11:04 -04:00
nithinsubbiah fde390c766 Re-enable custom op support 2022-08-16 22:49:08 +05:30
Jae Hoon (Antonio) Kim 0af55781ae
Propagate device data names (#1157)
* Propagate device data names

* Address PR comment

* Add example usage

* Add test for device data names

* Make TorchMlirComputation fields protected

* Add lazy backend device data name unit tests

* Disable lazy backend tests if LTC is disabled

* Add comments
2022-08-16 09:30:22 -04:00
武家伟 3b3cb99ef8
Generalize canonicalization pattern for more aten.sub/div/mul/add op (#1209)
Generalize canonicalization pattern for more sub/div/mul/add op, but for AtenDivTensorModeOp in 'trunc' rounding mode, we try to fold it.
2022-08-16 13:24:08 +08:00
Sambhav Jain 41aa562fb4
s/external/externals/g (#1222)
Fix remaining instances of `external/llvm-project`.
2022-08-13 07:13:56 -07:00
Prashant Kumar b1a506624c Add decomposition of `aten.masked.tensor` op.
`aten.masked.tensor` op has been decomposed to `aten.masked.scalar` op.
2022-08-11 07:48:04 +05:30
Vidush Singhal dd2da5a038
E2E support for AtenRemainderScalarOp (#1200) 2022-08-10 20:02:06 -04:00
gpetters94 79b9cf9468
Add lowering for aten.to.device (#1107) 2022-08-10 19:24:02 -04:00
powderluv 2342456356
mac m1 cross compile (#1204)
* mac m1 cross compile

Add support for M1 cross compile

* Remove redundant ExecutionEngine

It is registered as part of RegisterEverything

* nuke non-universal zstd

disable LTC
2022-08-10 08:48:39 -07:00
powderluv e55fc4deb5
Revert "E2E support for AtenRemainderScalarOp (#1119)" (#1190)
This reverts commit 34e207eeb5.
2022-08-08 22:59:57 -07:00
Henry Tu 3e97a33c80
Revert "Reenable LTC in out-of-tree build (#1177)" (#1183)
This reverts commit f85ae9c685.
2022-08-08 18:58:35 -07:00
Vidush Singhal 34e207eeb5
E2E support for AtenRemainderScalarOp (#1119)
* E2E support for AtenRemainderScalarOp
2022-08-08 20:02:52 -04:00
Vidush Singhal b70548edff
Add decomposition and E2E support for Aten_EmbeddingBag (#1137)
* Add decomposition and E2E support for Aten_EmbeddingBag
2022-08-08 18:56:49 -04:00
Henry Tu f85ae9c685
Reenable LTC in out-of-tree build (#1177) 2022-08-08 17:35:22 -04:00
Tanyo Kwok 290d7755fb
importer: add initial support for loading Float16 tensors (#1169)
follow up #761:

    This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
    method to enable the creation of tensors whose base type is Float16.
    This patch also adds a test to validate the IR generation, and it
    updates the test for importing tensors of various types.
2022-08-08 12:37:31 +08:00
Sean Silva 5618890ca0 development.md: Avoid name collisions with PYTORCH_ variables 2022-08-05 19:41:08 -07:00
Henry Tu e322f6a878
Update LTC CMake hack documentation (#1155)
* Update CMakeLists.txt

* Update CMakeLists.txt

* Update CMakeLists.txt

* Update CMakeLists.txt

* Update buildAndTest.yml

* Update setup.py

* Address review comments
2022-08-05 14:12:20 -04:00
Sean Silva 8ce5d3f12c E2E framework: Report tensor dtype in summary
This helps to triage issues related to backends that don't support all
dtypes.
2022-08-05 10:05:18 -07:00
Vivek Khandelwal c129a6de93 [MLIR][TORCH] Add support for dim=None to Aten[Var|Std]DimOp
PyTorch recently added support for `dim=None` in the `torch.var`
(5ca9b2b6fa)
and `torch.std`op (eb0e30e0bc).
This commit adds the corresponding support in torch-mlir.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-08-05 20:28:56 +05:30
Sean Silva 31727f81d8 torch_mlir.compile: Allow ignoring traced shapes
In some cases, users know that a traced graph is valid for a wider set
of shapes than they originally traced it with. Provide an option for
users to ignore the shapes in the traced graph when they know it is
legal.

Fixes #997
2022-08-04 10:18:34 -07:00
Sean Silva 6484776a25 Make numerical stability test more perverse
To test the summation stability of `torch.aten.var`, add a large
constant to it, which increases the effective precision requirements.
2022-08-04 10:04:38 -07:00
gpetters94 08fc2d89bb
Add non-unit groups support to aten.convolution (#858) 2022-08-04 02:18:38 -04:00
Ramiro Leal-Cavazos a7af1fd873
Add support for `dim=None` to `AtenMeanDimOp` (#1129)
PyTorch recently added support for `dim=None` in the `torch.mean`
op (2bfae07a79). This
commit adds the corresponding support in torch-mlir.
2022-08-02 16:08:06 +00:00
Quinn Dawkins 38d8498b21
add e2e support for aten.atan2 (#1117)
- Includes math-to-libm pass in refbackend for math::atan2 support
2022-08-02 11:39:41 -04:00
Vidush Singhal ed13ebfd8d
E2E support for AtenEmbeddingBagPaddingIdxOp SUM Mode (#1066) 2022-08-01 16:44:11 -04:00
Alec 554570f3ab Implemented a decomposition of aten::narrow 2022-08-01 18:32:14 +05:30
Henry Tu 2c3b3606d0 Resolve remaining LTC CI failures (#1110)
* Replace CHECK_EQ with TORCH_CHECK_EQ

* Check value of TORCH_MLIR_USE_INSTALLED_PYTORCH during LTC build

* Update LTC XFAIL with NewZerosModule ops

* Explicitly blacklist _like ops

* Automatically blacklist new_/_like ops

* Prune away unused Python dependencies from LTC

* Add flag to disable LTC

* Autogen dummy _REFERENCE_LAZY_BACKEND library when LTC is disabled

* Implement compute_shape_var

* Removed Var tests from XFAIL Set

* XFAIL tests using _local_scalar_dense or index.Tensor

* Add StdDim tests to XFAIL set

* Autogen aten::cat
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 425362263b Clean up Autogen (#1112)
* Remove unnecessary sed in autogen

* Remove .pyc files frrom VCS
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 368963243e Export LTC Headers (#1108) 2022-07-30 09:40:02 -04:00
Henry Tu 70395de197 Resolve CI testing failure for Lazy Tensor Core (#1088)
* Xfail unsupported ops

* Register FuncDialect

* Include dynamic_ir in build

* Code reformat

* Enable LTC tests for macOS and Source Build
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 0d16a91656 Add support for lift_fresh op (#1101) 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim e37891b997 Default Device Ordinal API (#1079)
* Add default device ordinal API

* Fix reference backend
2022-07-30 09:40:02 -04:00
Antonio Kim de6c135dc3 Fix LTC autogen for CI with nightly PyTorch
- Update llvm-project pin to match main
2022-07-30 09:40:02 -04:00
Henry Tu cec74b8d37 Blacklist _convolution op (#1048)
* Blacklist _convolution op in LTC

* Removed duplicate Torch_AtenSelectScatterOp instance from autogen .td

* Removed duplicate Torch_AtenSliceScatterOp instance from autogen .td
2022-07-30 09:40:02 -04:00
Henry Tu 47bb38d180 Reference Lazy Backend (#1045)
* Changed Example MLIR backend to Reference MLIR backend

* Moved reference_ltc_backend into csrc

* Merged sys_utils.h

* Renamed reference_ltc_backend to reference_lazy_backend

* Addressed review comments

* Update docs with new library name

* Removed _REFERENCE_LAZY_BACKEND from .gitignore

* Added reference_lazy_backend to the TorchMLIRPythonModules dependency list

Fixed typo in `ltc_examples.md`

Missed instance where `ltc_backend` was used instead of `lazy_backend`.
2022-07-30 09:40:02 -04:00
Henry Tu f5acad8512 Prune xfail e2e LTC tests & fix bugs from functionalization pass (#1044)
- Pruned number of xfailed e2e LTC tests from 305 to 134
  - Reviewed every failure to ensure the error genuinely warrants an xfail
- Fixed bug where non-tensor outputs of LTC computation had `.to('cpu')` called, which caused a failure and inflated the xfail count
- Fixed bug with `HBC_basic` test where a constant tensor was created in its constructor without being declared as a buffer, which prevented the device from being updated when the parent `torch.nn.Module` got moved to the `lazy` device
  - Note that this test is still xfail'd due to some unsupported ops. Left a comment about some potential issues that may arise if it gets reenabled in the future
- Updated autogen `GeneratedTorchOps.td` to reflect the latest set of supported ops
- Renamed `aten.zero.functionalization` to `aten.zero` to reflect upstream PyTorch changes
2022-07-30 09:40:02 -04:00
Henry Tu 9de06f3ebd Update Torch MLIR readme 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim fb21c9e6cb Integrate Functionalization Pass (#998)
* Fix autogen build dir issue

* Got functionalization pass to compile

* Add slice/diagonal backwards functionalization

* Fix codegen invocation in CMakeLists.txt

* Add functionalization view ops

* Fix logsumexp out functionalization

* Fix ComputationPtr

* Blacklist new_empty op

* Add op comparison

* Remove unnecessary ops

Co-authored-by: Henry Tu <henry.tu@cerebras.net>
2022-07-30 09:40:02 -04:00
Henry Tu 1510eae75d Upstream native_batch_norm and native_batch_norm_backward shape inference functions (#978)
* Removed compute_shape_native_batch_norm

* Removed compute_shape_native_batch_norm_backward
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim a62d60829c Refactor autogen (#925) 2022-07-30 09:40:02 -04:00
Henry Tu dfcc26556a Added e2e LTC tests (#916)
* Added e2e LTC Torch MLIR tests

* Fix seed for reproducability

* Check if computation is None before getting debug string

* Updated unit tests, and added numeric tests

* Print name of the model layer that fails numeric validation

* Run LTC e2e test with CI/CD

* Set seed in main function, instead of beginning of execution

* Add comment to specify number of digits of precision

* Fixed typo

* Remove tests for LTC example models

* Added LTC option to torchscript e2e

* Implement compile and run for LTC e2e test

* xfail all tests that use ops that aren't currently supported
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 8312fa535b Refactor Node Lowering (#914) 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim d9aee0d7a7 E2E HuggingFace Bert using LTC Backend (#912)
* Update native function definitions

* Add ops to support bert lowering

- Add empty_strided and as_strided

- Restore zeros_like to op blacklist (Without this, tensors will be unintentionally created with a CPU device rather than lazy)

- Check for composite implicit ops and add device data IR

- Also fix codegen for functionalization

* Add autogen to CMakeList

* Remove PyTorch submodule

* Reduced BERT model size

* Print Mark Step status in Torch MLIR LTC debug string

* Apply fixes to work with latest upstream/main

- Pass importOptions into getMlirTypeFromTorchType during NodeImporter::importNode

  Without this, the tensor type created may have a mismatched type as ImportOptions may cause vtensor to be used instead of tensor

* Update shape inference functions

- Fixed compute_shape_native_batch_norm when mean and var are uninitialized

  Previously, the number of shapes returned would be <3 if either mean or val was didn't exist. Instead, we now initialize them with a vector matching the number of channels.

- Implemented compute_shape_mul

- Fixed bug in reshape shape inference error message

* Get MLIR backend more consistent with TS backend

- Remove LazyNativeFunctions::_unsafe_view from autogen

- Blacklist ops to make JIT graph more like output of TS backend

- Print graph when SSA value has mismatch of types and results

- Remove normalize_index from LazyShapeInference

- Fix seeds for LTC example models

* Update and clean up shape inference functions

- Prune shape inference functions

- Add shape inference function for GenerateSlice

- Add shape inference function for GenerateCopy

Co-authored-by: Henry Tu <henry.tu@cerebras.net>
2022-07-30 09:40:02 -04:00
Henry Tu 0c35e607b3 Add static shape for scalar tensors (#833)
* Assume zero rank tensors are scalar

* Run RefineTypes pass on JIT Graph

* Rollback assumption that zero rank tensors are scalar

* Set numSizes to -1 for non-ranked tensors

* Rename RefineTypes to RefineTupleTypes
2022-07-30 09:40:02 -04:00
Henry Tu de5b380143 Bert example and relevant shape inference functions (#831) 2022-07-30 09:40:02 -04:00
Henry Tu 406d1e7538 Use JIT GraphExecutor for execution in example backend (#830)
* Update LazyShapeInference header

* Use JIT GraphExecutor for execution in example backend
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 1bde00c73d Fix LTC Decoupling (#815)
* Initial changes

* Fix up native functions

* Further fix decoupling

* Remove unnecessary ops

* Formatting and copyright banners:

* Add pytorch submodule
2022-07-30 09:40:02 -04:00
Henry Tu cca9fe126e Enable support for LTC Input/Output Mapping (#764)
* Save InputOutputAliases to TorchMlirComputation

* Implement GetResultShape for TorchMlirLoweringContext

* Use optional return type for GetResultShape

* Remove support for aten::detach

With this op enabled, tensors were being copied, which resulted in incorrect aliasing.

* Add newline before printing I/O alias mapping

* Changed printout to use "Input param" as label instead of "Input"

* Remote shape inference function for aten::detach

* Moved implementation of SetUpAlias to MlirLoweringContext

As part of this change, TorchMlirComputation has been moved to the end of mlir_lowering_context.h so that it can access some new structs in TorchMlirLoweringContext

* Use updated PyTorch API

* Remove GetResultShape

Complements this upstream PyTorch PR: pytorch/pytorch#75828

This PR adds support for mapping input and output tensors which alias each other. (e.g. maps input weight tensor in parameter to the same tensor in output after a training iteration)

MLIR: 
func @graph(%arg0: !torch.vtensor<[1,5],f32>, %arg1: !torch.vtensor<[1],si64>, ..., %arg6: !torch.vtensor<[10,5],f32>, %arg7: !torch.vtensor<[10],f32>, ...) {
  ...
  return %arg0, %arg1, %17, %23, ... : !torch.vtensor<[1,5],f32>, !torch.vtensor<[1],si64>, !torch.vtensor<[10,5],f32>, !torch.vtensor<[10],f32>, ...
}

Input/Output Alias Mapping: 
Output: 0 -> Input: 0
Output: 1 -> Input: 1
Output: 2 -> Input: 6
Output: 3 -> Input: 7
The aten::detach op has also been disabled in this PR to fix the issue of tensors not aliasing properly due to copying.
2022-07-30 09:40:02 -04:00
Antonio Kim 615ff1d31c Generate MLIR with shape information via LTC frontend (#742) 2022-07-30 09:40:02 -04:00
Henry Tu a605fe279c Add example Torch MLIR LTC Backend (#725) 2022-07-30 09:40:02 -04:00
Henry Tu 3e9b1cbd36 Added JIT to MLIR lowering (#724)
* Added JIT to MLIR lowering

Lowering to JIT is performed in a way similar to how it's done in the TS LTC backend. After a jit::Graph is constructed, it gets converted to a jit::Function, which is fed into the existing utility to generate an MlirModule in torch-mlir.

* Renamed `csrc/backend` to `csrc/base_lazy_backend`
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 65cf1465ef Fix Torch-MLIR LTC Backend based off latest PyTorch master (#723)
* Changes as a result of the LTC TS backend decoupling

* Fix bugs in BackendImpl and codegen

* Fix based on latest PyTorch master
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim c3b20e444c Got LTC working until compile (#689) 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 58338f79a1 Torch-MLIR LTC Backend Lowering Codegen (#621)
* Codegen and build LTC lowering

* Add LazyShapeInference header
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 2f22e2ef40 Add initial LTC backend (#610)
* Add initial LTC backend skeleton

* Disable CI build and move TorchMLIRPyTorch.cmake
2022-07-30 09:40:02 -04:00
PhaneeshB 8b5631d4c5 [MLIR][TORCH] Add decomposition for aten.std.dim Op
Signed-Off By: Phaneesh Barwaria <phaneesh@nod-labs.com>
2022-07-29 23:52:54 +05:30
Vivek Khandelwal 9a1203c844 Fix CI failure due to upstream PyTorch change in aten.mean.dim op
Fixes https://github.com/llvm/torch-mlir/issues/1121

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-07-29 17:19:22 +05:30
Vivek Khandelwal c681c3497a [MLIR][TORCH} Fix empty dim cases for the .dim ops
This commit fixes the shape calculation for:
1.) aten.mean.dim
2.) aten.var.dim
3.) aten.sum.dim_IntList op

Also, it fixes the lowering of `aten.mean.dim` and
`aten.sum.dim_IntList` for handling the cases of empty dim list.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com
2022-07-29 11:08:57 +05:30
Vivek Khandelwal d386b8f9e5 [MLIR][TORCH] Add decomposition for aten.var.correction op
This commit adds the decomposition for `aten.var.correction` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com
2022-07-29 11:08:57 +05:30
Vivek Khandelwal 7247c6a3a7 [MLIR][TORCH] Add E2E support for aten.ge.int op
This commit adds lowering of `aten.ge.int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-29 11:08:57 +05:30
Quinn Dawkins 11a8901078
[MLIR][TORCH] Add support for multiple indexing tensors for aten.index.Tensor (#1097)
- Includes a canonicalizer for `aten.add.t`needed for successfully lowering the shape function
 - Only offers support for statically sized index tensors when there is more than one
 - Dynamic shape support remains for single indexing tensors
2022-07-28 19:00:02 -04:00
Quinn Dawkins 3c9addf19c Add e2e support for aten.expm1 2022-07-27 12:31:35 +05:30
Kevin Kiningham e8f327cc00 Add lowering to linalg for softplus and log1p
Follows existing conventions for unary operators.
2022-07-25 21:25:57 +05:30
powderluv f424930a28
Add option to expose custom PyTorch repo/branch (#1103) 2022-07-24 20:08:48 -07:00
powderluv 31fd812acf
Add linux and macOS source builds in CI (#1070)
This enables building Pytorch from source in the CI.
The build should mostly hit the ccache.
Release builds will follow once we have some runtime on the CI.
2022-07-21 14:16:03 -07:00
Ashay Rane 72dd04cdb3
Revert "python: trim registration and loading of dialects and passes" (#1093)
This reverts commit ad283c1043, since it's
causing nightly build failures for all platforms.
2022-07-21 09:35:42 -07:00
Ashay Rane ad283c1043
python: trim registration and loading of dialects and passes (#1084)
In the interest of merging upstream LLVM quickly, a previous patch
(7f08169) updated the torch-mlir build to register all dialects and
passes through Python bindings.  This patch limits the dialects and
passes to only those that are used in torch-mlir.

Key to this change are the removal of
`MLIRPythonExtension.RegisterEverything` and the introduction of a new
Python module (`_mlir_libs/_site_initialize_0.py`), where we register
the dialects and passes used by torch-mlir.
2022-07-20 18:34:17 -07:00
Ziheng Jiang c61c99e887
[MHLO] Init MHLO integration. (#1083)
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-07-20 16:18:16 -07:00
Quinn Dawkins 647e75e029
Allow expanding and collapsing in aten::view (#1082)
- Supports cases where the view op expands and collapses dims
simulataneously. This does not handle the case where it is neither
expanding nor collapsing (e.g. [2, 3] -> [3, 2])
 - Additionally fixes a previous bug with adding 1-sized dims on both
sides of a tensor with aten.view
2022-07-20 17:35:51 -04:00
Kevin Kiningham 21f905afbe
Emit underscore version of aten.sqrt (#1072) 2022-07-18 23:57:47 -07:00
Quinn Dawkins c73a39e40a Add support for index.Tensor on dimensions other than the first
This patch still only supports a single indexing tensor.
2022-07-19 11:36:52 +05:30
Ashay Rane 7f08169380
bump llvm tag to 3580daa (#1078)
This patch makes some rudimentary changes to torch-mlir's use of MLIR
Python bindings to work with the most recent LLVM code.  We can perhaps
do better by being more selective in what we link against, instead of
using `MLIRPythonExtension.RegisterEverything`.
2022-07-18 16:49:03 -07:00
Vivek Khandelwal df0b1e77a4 [MLIR][TORCH] Add negative dim support for aten.cat and aten.slice op
This commit adds the support for negative dim cases for `aten.cat`,
`aten.slice.Tensor` and `aten.slice_scatter` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-18 14:01:33 +05:30
Sean Silva 795479a88d Remove HasValueSemantics from `is` ops. 2022-07-15 17:03:17 -07:00
Maksim Levental d70bb68c9e
Add named exception TorchMlirCompilerError. (#1064) 2022-07-15 16:32:36 -05:00
Ramiro Leal-Cavazos afdaa60dd4
Fix typo in `inputRank` check of `AtenBatchNormOp` (#1046)
The original conversion pattern for `AtenBatchNormOp` required that
the input rank be greater than 2; however, the only
expectation in the conversion pattern and in Pytorch is that the input
rank is greater than 1, since the second dimension of the input must
match the size of the `weight`, `bias`, `runningMean`, and
`runningVar` inputs. This commit fixes the `inputRank` check.
2022-07-15 09:35:59 -07:00
Vivek Khandelwal 3589134d31 [MLIR][TORCH] Add decomposition for aten.var.dim op
This commit adds the decomposition for `aten.var.dim` op.
This commit also make changes in the decomposition for `aten.var` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-15 09:53:42 +05:30
powderluv 479a8a8963
Remove libtorch downloads (#1058)
Remove all the libtorch downloads. If the user sets
-DTORCH_MLIR_USE_INSTALLED_PYTORCH=OFF then just build from src.

Doesn't change developer workflow since we still default to local
PyTorch versions.

TEST: Build and verify all tests (except one xfail quant) pass on linux
2022-07-14 17:16:51 -07:00
Maksim Levental 1bb990afc7
Speed up libtorch build. (#1031) 2022-07-11 20:46:49 -05:00
Ramiro Leal-Cavazos 11148e60d6
Undo shape lib changes + update function signature of sum + zero (#1035)
This commit does three things:
  1. Reverts some of the shape lib changes merged in
  https://github.com/llvm/torch-mlir/pull/844
  2. Updates the signature of `aten.sum_dim_IntList` that was recently
  updated in
  23bdb570cf
  3. Replaces `aten.zero.functional` with `aten.zero`, updated in 960758b0b7
2022-07-11 10:56:12 -07:00
Prateek Gupta 2d75654b2c [TORCH][MLIR] Add lowering of `aten.slice_scatter` and
`aten.select_scatter` op.

This commit adds:
1.  Lowering of `aten.slice_scatter` op into `tensor.insert_slice`
op.
2. Decomposes the `aten.select_scatter` op into `aten.slice_scater`
op.

Signed-Off-By: Prateek Gupta <gprateek93@gmail.com>
2022-07-11 14:07:21 +05:30
George Petterson a08ff0d7f2 Add lowering for _convolution 2022-07-11 11:03:03 +05:30
Sean Silva 93f1c3138b torch_mlir.compile: Allow OutputType as a string.
A lot of code was super verbose with `torch_mlir.OutputType.XYZ`. Now,
you can simply do `"xyz"`. I updated a few examples.
2022-07-08 17:37:27 -07:00
Sean Silva 5bd9362c61 Remove mention of upstream_shape_helpers
There were some leftovers.
2022-07-08 14:43:55 -07:00
Henry Tu 3ad810a1fb
Update CMakeLists.txt (#1028) 2022-07-08 16:45:52 -04:00
powderluv f202ae0012
Revert to using local PyTorch binaries (#1024)
Temporarily revert to using PyTorch binaries until source builds
are ready to land.

TORCH_MLIR_USE_INSTALLED_PYTORCH can be turned to OFF if you want
to link against libtorch and/or source builds.
2022-07-07 15:42:08 -07:00
Quinn Dawkins f0c3b5a7ed
Add E2E support for aten.len.str (#969) 2022-07-07 10:41:55 -07:00
Ashay Rane 874fdb7e42
build: improve robustness of cmake and shell scripts (#1018)
On my local machine, `unzip` didn't exist (producing a "command not
found" error), but CMake ignored the error.  Although the build did
succeed (because it found a previously-built version of libtorch), it
seems better to abort builds on such failures, so this patch checks the
return code of all external process invocations.

Along similar lines, this patch also updates the shell scripts in
`build_tools` to extensively use double-quoting to prevent unintentional
word splitting or globbing.  Since some of the scripts execute `rm`
while using shell variables, this patch also adds the preamble `set -u`
to abort execution if an undefined variable is referenced, so that we
reduce the chances of executing `rm -rf /` if the path expression
happens to refer to an undefined variable.
2022-07-06 14:39:30 -07:00
powderluv 33bfeda4c5
Enable libtorch caching and source builds (#1004)
Add an option to cache libtorch/ releases if you don't want to
download the latest. Add an option to enable source builds.

TESTS:
macOS: verify with / without cache downloads
       verify source builds -- shared and static

Linux: Build Tests and Release builds
2022-07-05 10:25:43 -07:00
powderluv be3d14cf76
Fix multi-threaded tests on macOS (#1005)
Fixes https://github.com/llvm/torch-mlir/issues/994
2022-07-05 00:05:36 -07:00
Tanyo Kwok d4f1f41435
[MLIR][TORCH] Add decomposition of aten.repeat (#932)
* [MLIR][TORCH] Add decomposition of aten.repeat

* refine & rebase

* refine static shapes

* add e2e test

* Rebase and Refine naming style
2022-07-01 13:02:31 +08:00
Ramiro Leal-Cavazos f204210266
[LINALG] Fix handling of size-1 dims in `aten.view` again. (#992)
A previous fix to the handling of size-1 dims in
`aten.view` (https://github.com/llvm/torch-mlir/pull/962) resulted in
the wrong grouping of dimensions when size-1 dims where between two
dims of size greater than 1. This commit fixes that.
2022-06-30 16:39:25 -07:00
Ashay Rane f947443f98
python: lower `prim::{Load,Store,Enter,Exit}` nodes to torch dialect (#983)
TorchScript nodes like `prim::Load` and `prim::Store` aren't supported
in torch-mlir because they can't be lowered to backends, but such nodes
can occur in the TorchScript IR.

This patch adds a rudimentary translation from such nodes to
corresponding ops in the Torch dialect.  Since we expected such nodes to
go away during lowering because of the SymbolDCE pass, this patch does
not add code to lower these ops beyond the Torch dialect.
2022-06-30 13:17:35 -07:00
Suraj Sudhir bb576c2cb3
[tosa] aten.embedding op support (#991)
Enables BERT legalization.

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2022-06-30 13:13:52 -07:00
powderluv 2b52da951b
Link against libtorch (#955)
This moves torch-mlir to link against libtorch on macOS and linux

TESTS: Tests pass. Tested release builds on linux and macOS
2022-06-30 12:40:17 -07:00
Sean Silva 227dea7b2e Add support for ScalarType::QUInt8
I ran into this while poking around at
https://github.com/llvm/torch-mlir/issues/959
2022-06-29 15:33:28 -07:00
powderluv cd79538a0c
Update test to pass with newer versions of tanh (#990) 2022-06-28 20:28:13 -07:00
Tanyo Kwok 5fbf2a376c
fix export torch.literal on gpu (#10) (#985) 2022-06-29 10:10:34 +08:00
JakopinA 5888c4f7dc Added E2E support for torch::aten.__contains__int_list 2022-06-27 19:30:00 +05:30
Gaurav Shukla 1be604bfd3 [LINALG] Lower `aten.Matmul` to `linalg.BatchMatmul`
This commit lowers `aten.matmul` to `linalg.BatchMatmul` under the
following conditions:
1. The result of matrix multiplication must have batch dimensions,
   i.e., rank greater than 2.
2. The resultant matrix must have at most 1 dynamic batch dimension.

It also handles broadcasting of batch dimensions when batch dimensions
of the matrices are broadcastable.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-06-25 10:58:06 +05:30
Ramiro Leal-Cavazos 400fecc1e5
[LINALG] Fix shape function of index.Tensor + support N-rank inputs (#972)
This commit fixes the shape function for `index.Tensor`, adding
support for multiple index tensors and `None`s in the indices
list. This commit also adds support for input tensors of rank greater
than 1. The lowering for `index.Tensor` still has the the limitation
that only a single index tensor along the first dimension of the input
tensor is supported.
2022-06-24 09:45:44 -07:00
Ashay Rane 234fc7fe0c
linalg: lower `aten.triu` op to `linalg.generic` (#965)
Prior to this patch, the torch dialect included `AtenTriuOp` for
computing the upper triangular part of the input matrix, but there was
no code for lowering the op to the linalg dialect.

This patch adds code to generate a `linalg.generic` operation that
compares indices (computed using `linalg.index`) to choose between zero
or the original value (using `arith.select`).  The lowering fails if the
number of dimensions are less than two.  This patch also adds a few
end-to-end tests.
2022-06-23 22:45:48 -07:00
erman-gurses 5cff40c88a Add canonicalization for aten.add.tensor op 2022-06-23 17:24:59 -04:00
Maksim Levental 829717c96e
Bump LLVM (#958) 2022-06-22 22:23:46 -05:00
Ramiro Leal-Cavazos 8b94759303
[LINALG] Fix handling of size-1 dims in `aten.view` (#962)
This commit adds support for several size-1 dims in a row in an
expansion using `aten.view`.
2022-06-22 15:58:40 -07:00
Vivek Khandelwal 77ab31641f [MLIR][TORCH] Add decomposition of aten.numpy_T op
This commit adds the decomposition of `aten.numpy_T` op into
`aten.t` or `aten.permute` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-16 00:01:22 +05:30
Vivek Khandelwal 4605dc9c99 [MLIR][TORCH] Add support for bool type in convertScalarToDtype utility
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-16 00:00:47 +05:30
Albert Sandru 708a51ae2e Add E2E support for aten.is_floating_point 2022-06-15 11:54:00 -05:00
Ramiro Leal-Cavazos 246c2df65a
[LINALG] Fix typo in conversion pattern of `aten.embedding` (#942) 2022-06-15 09:45:10 -07:00
Vivek Khandelwal aed5517fda [MLIR][TORCH] Add integer dtype support for aten.rsub.Scalar op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-15 16:46:28 +05:30
Bob Adolf b90837ee24
Temporarily revert support for custom op extensions. (#944)
The MacOS builders are having linking trouble with the extension library.
Until it's fixed, all support for op extensions is disabled. It should be
easy to restore once the issue is resolved.
2022-06-14 18:24:40 -07:00
powderluv 8fd084377d
Update CMakeLists.txt 2022-06-14 14:46:52 -07:00
powderluv dfc6f7c547
Update CMakeLists.txt
Emergency fix to unblock the nightly Release builder
2022-06-14 14:38:35 -07:00
Ramiro Leal-Cavazos 93f6d8e776
[LINALG] Add 0-rank case for `aten.permute` (#940)
The function `AffineMap::inferFromExprList` does not work if the first
vector of expressions is empty, because it uses these expressions to
obtain the context. This prevented `aten.permute` from working for
inputs of 0-rank. This commit adds support for 0-rank inputs.
2022-06-14 12:50:46 -07:00
Vivek Khandelwal 33fa8e7761 [MLIR][TORCH] Add decomposition of aten.floor_divide op
This commit adds the decomposition of `aten.floor_divide` op into
`aten.div.Tensor_mode` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-14 08:56:25 +05:30
Tanyo Kwok 0d4445eaf9
Fix: 0 sizes tensor being regarded as unknown rank (#923) 2022-06-14 09:58:50 +08:00
Bob Adolf 0a7ba62438
Allow torch-mlir to support PyTorch extensions. (#895)
PyTorch allows new operators to be registered dynamically in modules.
Torch-mlir already makes it fairly straightforward to add support for
new operators, and this commit just extends that support to allow new
PyTorch ops to come from a external module.

This does *not* allow ops to be dynamically loaded into torch-mlir.
Torch-mlir must still be compiled with support built-in.

Add a `_torch_mlir_custom_op_example` subpackage to `torch_mlir` which
registers an demonstration op. It will not be imported by default when
importing torch_mlir. It's strictly for testing and documentation.

Adds an end-to-end test for the `torch_mlir_custom_op_example::identity` op.

With all these changes, we should now be actively testing PyTorch extension
support with all future patches.
2022-06-13 14:51:30 -07:00
powderluv 02b917f769
Change to the real PackedParams.h location (#929)
Also update the PyTorch nightly URL
2022-06-10 14:43:52 -07:00
powderluv 4cdf4e7d47
Fix new location for PackedParams.h (#928)
Looks like they renamed it in location
2022-06-10 14:30:31 -07:00
Tanyo Kwok e70d4f732d
Fix class_annotator_pybind.h header guard (#924)
merging to unblock builders
2022-06-10 11:58:26 -07:00
powderluv 6615add806
Fix the new header location (#926)
Seems to have moved in the latest nightly
2022-06-10 11:57:58 -07:00
Maksim Levental 5c85ac3100
Handle `nn.Linear(..., bias=False)` case for TorchToLinalg (#919) 2022-06-08 21:13:43 -05:00
Henry Tu 298d095acf
Use double quotes instead of single quotes (#918) 2022-06-08 15:00:56 -04:00
Henry Tu c1da9edcf0
Generate underscore variant of functional ops (#915)
* Generate underscore variant of functional ops

* Do not apply `IsTrailingUnderscoreInplaceVariant` trait to underscore variant of functional op
2022-06-08 14:27:36 -04:00
Tanyo Kwok bd53998da8
Remove pybind deps from importer and annotator (#903)
* Remove pybind deps from importer and annotator
* Rename files to class_annotator_pybind.cpp/.h
2022-06-08 10:12:05 +08:00
Sean Silva e1b38e74dd Use upstream shape functions directly.
Now that upstream exposes them nicely, we can use them.

I noticed that we had added stuff into the upstream_shape_helpers.py
file (which was supposed to stay pristine), so some more shape functions
need to be upstreamed.

Going forward, all shape functions should be upstreamed similar to
https://github.com/pytorch/pytorch/pull/76889 instead of added in this
file.
2022-06-07 11:15:03 -07:00
Ramiro Leal-Cavazos 22c0893ec6
Update debug options in compilation errors (#913)
The flag for printing the IR after each pass is now prefixed with
"mlir". This commit updates the flag in the error reporting for the
compiler.
2022-06-07 10:55:54 -07:00
Vivek Khandelwal b95b3d844d [MLIR][TORCH] Add E2E support for aten.div.Tensor_mode op
This commit adds lowering of `aten.div.Tensor_mode` op.
This commit also fixes formatting for the test file elementwise.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-07 22:26:44 +05:30
Vivek Khandelwal a11ef674a7 [MLIR][TORCH] Add E2E support for aten.baddbmm op
This commit decomposes `aten.baddbmm` op into `aten.bmm`,
`aten.mul.Scalar`, and `aten.add.Tensor` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-07 22:26:28 +05:30
Jae Hoon (Antonio) Kim fe784fd900
Add Support for aten::scatter_add (#906) 2022-06-06 15:02:45 -04:00
Jae Hoon (Antonio) Kim 8a1839a17e
Add support for aten::arange.start_out (#905) 2022-06-06 15:02:27 -04:00
Vivek Khandelwal 2718b4d838 [MLIR][TORCH] Add E2E support for aten.clamp_[min|max] op
This commit decomposes `aten.clamp_min` and `aten.clamp_max` op
into `aten.clamp` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-06 11:52:29 +05:30
Sean Silva ccc858f531 torch_mlir.compile: Fix API footgun
use_tracing=True was behaving unexpectedly because the handling of
single arguments was happening after the torch.jit.trace call.

This also fixes the check to specifically test for a torch.Tensor or
TensorPlaceholder so that both lists and tuples would be correctly
handled.
2022-06-05 18:10:07 -07:00
Vidush Singhal fc419b1e7d
Add E2E support for AtenLogicalOrOp. (#883) 2022-06-03 16:21:03 -07:00
Henry Tu abf5c94a1b
Replace valsem.aten.zero with aten.zero.functional (#893) 2022-06-03 16:27:31 -04:00
Henry Tu 650f5a5008
Added support for native_dropout_backward (#892) 2022-06-03 14:08:51 -04:00
Henry Tu b7082a8d4e
Added support for native_dropout (#891) 2022-06-03 14:05:57 -04:00
Henry Tu a635fd2287
Added support for native_batch_norm_backward (#890) 2022-06-03 13:49:02 -04:00
Henry Tu bfe8ff4b42
Added support for embedding_dense_backward (#889) 2022-06-03 13:33:43 -04:00
Henry Tu a29903dfc8
Added support for native_layer_norm_backward (#888) 2022-06-03 13:15:23 -04:00
Vidush Singhal 0a913bc904
Add E2E support for AtenAllBoolOp (#874) 2022-06-01 18:20:25 -07:00
Vivek Khandelwal 6f548fc3ad [MLIR][TORCH] Add decomposition of aten.adaptive_avg_pool2d op
This commit adds the decomposition of `aten.adaptive_avg_pool2d` op into
`aten.avg_pool2d` op. The current decomposition only supports cases where
input size is equal to the output size.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-27 07:56:37 +05:30
Ramiro Leal-Cavazos b76c8c82dc
Emit `aten.unsqueeze` with mutating variants (#873)
The op `aten.unsqueeze` has a mutating variant. This commit adds
support for that variant.
2022-05-26 19:19:38 -05:00
Maksim Levental cec5aeedb0
add ci tests (#754) 2022-05-25 14:59:59 -05:00
Vivek Khandelwal 56e77d4213 [MLIR][TORCH] Add E2E support for aten.Bool.[float|int] op
This commit adds lowering of `aten.Bool.float` and `aten.Bool.int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-24 21:18:34 +05:30
Vivek Khandelwal 014a6d16c7 [MLIR][TORCH] Add E2E support for aten.any.bool op
This commit adds lowering of `aten.any.bool` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-24 17:24:28 +05:30
Vivek Khandelwal bc9b2156e3 [MLIR][TORCH] Add E2E support for aten.sqrt.int op
This commit adds lowering of `aten.sqrt.int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-24 16:50:39 +05:30
Ashay Rane f18b2be911
torch,linalg: add support for translating aten.linalg.vector_norm (#839)
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function.  It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.

There exist several opportunities to make this lowering optimal and
robust.  For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf.  For L1 norms, we don't need to raise
each element to the power 1.0.  Similarly, L2 norms could benefit from
strength reduction.  Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
2022-05-19 15:48:15 -07:00
Sean Silva 2af53ce434 torch_mlir.compile: Add OutputType.RAW
This can help with development and reporting bugs.
2022-05-19 03:41:43 -07:00
Sean Silva ef9e4c95f2 torch_mlir.compile: add support for dynamic sizes.
We do this by inroducing a TensorPlaceholder class, which can be used to
specify dynamic sizes. Internally, we canonicalize all example inputs
to TensorPlaceholder's.

This commit also adds some basic testing, which was missing before.
2022-05-17 07:02:32 -07:00
Ashay Rane bb52a460cb
mlir: bump llvm tag to 5380e3 (#856)
In addition to updating the llvm-project submodule, this patch also:

1. updates shape functions and tests so that `func` and `call`
   operations refer to the `func` dialect
2. avoid duplicate registration of dialects
2022-05-16 12:54:35 -07:00
Ramiro Leal-Cavazos 96f90efd16
Add shape info to `rand_like` + support for `dtype` flag (#851)
The op `aten.rand_like` was missing a shape function, unit tests, and
the `dtype` argument was being ignored in its decomposition. This
commit fixes all three things.
2022-05-12 16:00:59 -07:00
Yi Zhang ec0e9e0bc7 Add -s flag to run e2e tests sequentially
A user might want to avoid the extra layer of multiprocessing libary for
debugging purpose. In such cases, the -s flag can be used to force
sequential execution.
2022-05-11 21:16:41 -04:00
Vivek Khandelwal f15d257aac [MLIR][TORCH] Add support for ceil_mode = true for pooling ops
This commit adds support for aten.max_pool2d, aten.max_pool2d_with_indices,
and aten.avg_pool2d op for the cases where ceil_mode = true.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-11 12:52:47 +05:30
Vivek Khandelwal c69a1e5688 [MLIR][TORCH] Add E2E support for ScalarImplicit, Int.Scalar op
This commit adds lowering of `aten.ScalarImplicit` and `aten.Int.Scalar` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-10 22:40:49 +05:30
Prashant Kumar 12b3af70d3 [TORCH] Add folding of aten.detach op.
`aten.detach` op is folded and returns the first operand since it's an
identity function(kind of identity just remove the has_grad attribute).
2022-05-10 21:54:45 +05:30
Prashant Kumar 2b1b0f6e19 [LINALG] Add support for preserve memory format in aten_empty_like op.
The preserve memory specifies that `If any of the input tensors is in channels_last format,
operator output should be in channels_last format` and hence can be
added as is in aten_empty_like op.
2022-05-10 09:37:55 +05:30
Yi Zhang 5a6210b35b Workaround to make CI pass 2022-05-09 12:56:20 -04:00
yuhao 2e6a9c084e Update torch_mlir_tensor.py
typo
2022-05-07 21:46:10 -04:00
Yi Zhang 28be6511d2 Fix type promotion code for scalar only operations
Fix the type promotion code for scalar only operation to return
TorchType which is the type tracked in ValueKnowledge.scalarType.

- Fix `getPromotedResultScalarType` to return Torch type.
- Add `getBuiltInTypeForTorchScalar` helper to convert scalar type
to builtin type before passing to the next level type promotion
helper `updateResultTypeState`.
- Add `setScalarType` helper to make setting ValueKnowledge.scalarType
  easier.
2022-05-07 10:37:21 -04:00
Vivek Khandelwal b20679e1b8 [MLIR][TORCH] Modify aten::dropout op description
Signed-Off By: Vivek Khandelwal vivek@nod-labs.com
2022-05-06 11:15:52 +05:30
Yi Zhang 2ed90741eb Make e2e testing parallel
This change makes the e2e testing parallel using the multiprocessing
python module.
2022-05-05 21:27:58 -04:00
Vivek Khandelwal 96fabc0036 [MLIR][TORCH] E2E support for [ge|ceil].float, [ge|ne|gt].float_int op
This commit adds lowering of `aten.ge.float`, `aten.ge.float_int`,
`aten.ne.float_int`, `aten.gt.float_int` and `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py and scalar_comparison.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-05 21:48:35 +05:30
Yi Zhang 9f7264a7a4 Add support for scalar type propagation
The main changes are:
- Added `ValueKnowledge.scalarType` to track scalar type information.
- Added `ValueKnowledge.kind` to indicate the value kind.
- Modified the meet and join helper functions. The ValueKnowledge has
slightly more complicated state now so the meet and join function need
to look at the `kind` field in addition to just the type field.
2022-05-04 16:57:56 -04:00
Gaurav Shukla 4b911ada40 [LINALG] Add E2E support for `aten.mean.dim` op
- This commit adds support for `aten.mean.dim` op.
- It also adds a new test script `stats.py` for statistics related ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-05-04 20:11:42 +05:30
Sean Silva ab5ad7af09 Add tracing suport to `torch_mlir.compile`.
This also has a fix for the adjustment of types of TupleConstruct
inputs, which I found when using this new functionality on a model.

Some scenarios in tracing create situations where the output of
TupleConstruct has a more refined type than the inputs.

This introduces a helper `adjustStaticInformationForValues` which
subsumes the `derefineValues` helper and the tensor static information
adjustment we were doing.
2022-05-03 09:08:40 -07:00
Vivek Khandelwal c0634bc996 [MLIR][TORCH] Add E2E support for aten.to.dtype_layout op
This commit decomposes `aten.to.dtype_layout` op into `aten.to.dtype` op.
This commit also fixes the formatting for the file type_conversion.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-03 12:48:58 +05:30
gpetters94 c4dcdd1e34
Add aten.flip (#817) 2022-05-02 16:01:15 -04:00
Vivek Khandelwal 8a06419980 [MLIR][TORCH] Add E2E support for aten.masked_fill.Scalar op
This commit adds lowering of `aten.masked_fill.Scalar` op.
This commit also fixes the formatting of the file constant_alloc.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-02 22:27:33 +05:30
Vivek Khandelwal 4b11284440 [MLIR][TORCH] Add E2E support for aten.avg_pool2d op
This commit adds lowering of `aten.avg_pool2d` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-02 12:31:44 +05:30
Prateek Gupta 81ee5bb58c [TORCH][MLIR] Fix ConstantPad2dStaticModule test.
This commit fixes the `ConstantPad2dStaticModule` test case by adding
the lowering of `aten.pad` operation. Previously the test case
mapped to `aten.constant_pad_nd` operation.
The `aten.pad` now decomposes into `aten.constant_pad_nd` operation.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2022-04-29 21:57:01 +05:30
Ashay Rane 809f240f01
importer: add initial support for loading BFloat16 tensors (#761)
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is BFloat16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
2022-04-29 09:01:49 -07:00
Prateek Gupta e1db318a3c [TORCH][MLIR]Add lowering for control flow operations.
1. This commit adds lowering of "while-like" prim loop to scf.while
operation.
2. Adds lowering of "for-like" prim loops to scf.for operation.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2022-04-29 16:25:58 +05:30
Yi Zhang 7be9783f16 Fix the input tensors inplace update issue for e2e tests
Fix the inplace update tensor issue we had
where the torchscript execution would update the input value inplace
resulting the actual test not being able to see the original input
value.
2022-04-28 11:43:54 -04:00
Sean Silva 44c7b181d3 Revert "[MLIR][TORCH] Add E2E support for aten.ge.float op"
This reverts commit 564734b2d7.
2022-04-28 07:49:58 -07:00
Sean Silva eff144c0b7 Revert "[MLIR][TORCH] Add E2E support for aten.ge.float_int op"
This reverts commit 1f102cc400.
2022-04-28 07:49:58 -07:00
Sean Silva 7669ee4e4a Revert "[MLIR][TORCH] Add E2E support for aten.ne.float_int op"
This reverts commit 51dd462592.
2022-04-28 07:49:58 -07:00
Sean Silva 5ef9f501fa Revert "[MLIR][TORCH] Add E2E support for aten.ceil.float op"
This reverts commit 78f5747568.
2022-04-28 07:49:58 -07:00
Vivek Khandelwal ab0eafb617 [MLIR][TORCH] Add test cases for index_put op and fix formatting for index_put.py
This commit adds more test cases `aten::index_put` op.
This commit also fixes formatting issues with the test file index_put.py

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-28 13:41:47 +05:30
Vivek Khandelwal e57e1968bc [MLIR][TORCH] Add E2E support for aten.index_put.hacked_twin op
This commit decomposes `aten.index_put.hacked_twin` op into
`valsem.aten.index_put_impl` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-28 13:41:47 +05:30
Vivek Khandelwal 78f5747568 [MLIR][TORCH] Add E2E support for aten.ceil.float op
This commit adds lowering of `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-28 11:49:35 +05:30