This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.
This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
Rename BlockAndValueMapping to IRMapping
Moved PrimTupleConstructOp type validation to its own verifier as the
tablegen version does not work for a combination of variadic input and
non-variadic output.
One of the potential values for a `torch_upstream::ScalarType` is
`Undefined`. This means that conversion of a `ScalarType` to another
type is a computation that can fail. To enforce handling of the
failure case, this commit makes the two helper functions that convert
`ScalarType`s into other types return `failure()` when the
`ScalarType` is `Undefined`.
Credit to @vivekkhandelwal1 for finding the necessary changes.
Summary of changes:
- Switch Tosa_IntArrayAttr[N], Tosa_IntArrayAttrUpto[N] to DenseI64ArrayAttr.
- Replace kNoIterationLimit with kNoLimit. (https://reviews.llvm.org/D140525)
- Add dependency on MhloPasses when MHLO is enabled
- Specify result type when using mhlo::DotOp
There are several decompositions that assume the operands of the op
have dtypes available; however, the only time dtypes are guaranteed to
be present is when the graph has reached the backend contract. In
general, every pass that happens before reaching the backend contract
should not assume dtypes are available and should use `hasDtype` to
check first.
This commit adds `hasDtype` checks to every decomposition that uses
dtypes.
This commit replaces the `tanh` dtype function, which was being used
to test the implementation of dtype functions in
a710237437, with a dtype function for
`expm1`. The dtype function for `expm1` is identical to the `tanh`
one, so the same level of testing is maintained.
Currently, there are ops getting dtype information from the
`RefineTypes` pass and ops getting dtype information from the
`TorchDtypeRefinementPipeline`. Since each pass can only propagete
dtype information for the ops it knows how to handle, some models with
many ops handled in both passes require the two dtype propagation
passes to execute many times, reaching the iteration limit set in the
`LowerToBackendContractPass`. To temporarily avoid this issue while
the migration to `TorchDtypeRefinementPipeline` is finished, this
commit switches `tanh` to `expm1`, since the latter is used a lot less
in large models.
This reverts commit eaab9be207, since it
is causing the post-merge CI tests to fail, causing subsequent PRs to be
blocked. Specifically, the tests
`ElementwiseAtenLogicalAndOpPromoteBroadcastModule_basic` and
`ElementwiseAtenLogicalXorOpPromoteBroadcastModule_basic` fail because
the oracle does not match the computed result. This patch reverts the
commit to make the post-merge builds green again.
-- The dtype of the result of `aten.embedding` should match that of
the `weight` operand's (operand[0]) instead of hardcoding to f32.
-- This commit aims to provide a fix for the same.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Summary of changes:
- LLVM now includes <optional> instead of "llvm/ADT/Optional.h" in most
(although not all) places
(https://reviews.llvm.org/rG541ef3d61e9341cd38420c0dbca9250c4d0ea04c).
This patch replaces the affected instances of `llvm::Optional` with
`std::optional`.
- In the usages of llvm::Optional that remain, llvm::Optional::value()
is deprecated, so this patch replaces them with a dereference.
Functions like `getTypeForScalarType` that do a mapping from one set
of types to another should not fail, and if they do it
should be obvious to the developer that that function has an
unhandled case.
Instead of silently failing when encountering an unsupported type,
this commit adds a `report_fatal_error` at the end, similar to other
type translation functions in this file.
In order to verify if a given IR satisfies the backend contract, the
verifier needs to know if decompositions took place, and if so, which
ops were decomposed and which were not.
This commit adds two arguments to `verifyBackendContractPass` to
specify if decompositions took place and which ops to consider backend
legal, similar to the arguments of `LowerToBackendContractPass`.
Summary of changes:
- Replace `llvm::None` with `std::nullopt`, since the former is deprecated
(https://reviews.llvm.org/D139763)
- Use setter for symbol visibility instead of passing string attribute when
creating FuncOp
* [custom op] Generalize shape library logic to work with dtypes
This commit generalizes the shape library logic, so that dtype rules
for ops can also be expressed using the same mechanism. In other
words, each op can now have a shape function and a dtype function
specified in Python that is imported during lowering to calculate the
shapes and dtypes throught a program. For more information about how
to specify a dtype function, see the updated
`docs/adding_a_shape_and_dtype_function.md`.
For those not familiar with how the shape library works, the file
`docs/calculations_lib.md` provides an overview.
Currently `getTensorRank` returns -1 if it was unable to get the rank
of the tensor. However, not every use in the codebase was checking the
return value, and in some cases, the return value was casted to
unsigned leading to some infinte loops when an unranked tensor reached
a decomposition.
This commit changes the return of `getTensorRank` to
`Optional<unsigned>` to make it clear to the user that the function
can fail.
This commit also changes a couple of for loops that iterate a vector
in reverse order that can potentially become infinite loops into
range-based for loops.
A circular dependency was introduced in e7edcc62fd.
Specifically, the `makeShapeLLVMCompatible` and `makeShapeTorchCompatible` utilities were being called from `lib/Dialect/Torch/IR/TorchTypes.cpp` and `lib/Dialect/Torch/IR/TorchOps.cpp` defined under the `:TorchMLIRTorchDialect` bazel target, leading it to take a dependency on `:TorchMLIRConversionUtils` which already depends on `:TorchMLIRTorchDialect`, hence creating a circular dependency.
This commit resolves the same by moving said utilities from `lib/Conversion/Utils/Utils.cpp` to `lib/Dialect/Torch/Utils/Utils.cpp`. Please LMK if there's a better way to fix this and I will update the code.
This commit also adds the required targets to support building the new conversions from Torch to ML Program dialect that was introduced in f416953600.
Bazel build GHA triggered manually to verify: https://github.com/sjain-stanford/torch-mlir/actions/runs/3645944517
The current implementation of `DecomposeComplexOps` fails if an op
expected to be decomposed does not get decomposed in the first
iteration of the `createTorchSimplificationPipeline` in
`LowerToBackendContractPass`. However, some graphs require multiple
iterations of `createTorchSimplificationPipeline` to fully propagate
all statically knowable information, such as dtypes and shapes, to the
entire graph, sometimes resulting in the need to run
`DecomposeComplexOps` more than once.
This commit changes `DecomposeComplexOps` to use a greedy algorithm
for pattern application and moves the legalization check of ops to the
`LowerToBackendContractPass` to allow for the `DecomposeComplexOps` to
run more than once.
- Support for non-prefixed accessors has been removed. See:
https://reviews.llvm.org/D136727
- Rename `operands` to `methodOperands` in `prim.CallMethod` since the
name `operands` overlaps with a builtin method name. See:
https://reviews.llvm.org/D136727
- Add passes in refbackend to lower memref.subview. See:
https://reviews.llvm.org/D136377
- Replace `CopyToValueTensorOps` first in `RewriteViewLikeSubgraph` in
maximize-value-semantics.
The current implementation of the `RewriteViewLikeSubgraph` pass in
maximize-value-semantics creates temporarily invalid IR. In
particular, given a forward slice starting from a
`CopyToNonValueTensorOp` and ending in `CopyToValueTensorOp`s, the
pass first replaces all uses of the `CopyToNonValueTensorOp` with
its operand, which results in all the `CopyToValueTensorOp` users
having their operand have type `!torch.vtensor`, which is invalid.
The correct way to do things is to first replace all the
`CopyToValueTensorOp`s with their operand, and then replace all uses
of the `CopyToNonValueTensorOp` with its operand.
This only started failing now because the generated accessor
`getOperand` for the `CopyToValueTensorOp` now returns a
`TypedValue<NonValueTensorType>`, which has an assert checking that
the value returned is of the expected type.
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Summary of changes:
- Replace call to `MemoryEffectOpInterface::hasNoEffect`
with `isMemoryEffectFree`.
- Make fix for the dynamic dims, since
`kDynamicSize` value changed to
`std::numeric_limits<int64_t>::min()` from `-1` in llvm
- `makeShapeLLVMCompatible` and `makeShapeTorchCompatible`
utilities convert shapes in order to remain consistent
with the Torch and MLIR semantics.
- Update tags
llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
-- This commit fixes a bug in computeReductionType API.
-- The bug pertains to removal of `dim` from the `sizes` array.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
-- This commit adds decompose logic for `aten._softmax` when
`half_to_float` is `True`.
-- An e2e test case will be added once support for half to float conversion for
`aten._softmax` is added upstream.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
This commit fixes the aten.mean and aten.mean.dim op decomposition
for supporting large-sized inputs.
This commit also fixes the formatting for the file stats.py
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
-- aten.upsample_nearest2d.vec op is not present
owing to https://github.com/pytorch/pytorch/pull/85638
-- So this commit adds a lowering on aten.upsample_nearest2d.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
This commit renames the patterns used to match on lists of constant
values to `m_TorchListOfConstant{valueType}s`. This is needed to avoid
ambiguity for when `valueType` has `Optional` in it. In particular, it
makes it clear whether the values in the list are optional or the list
itself is optional.
lib/Dialect/Torch/Utils/Utils.cpp includes TorchOps.h, which, by way of
included header files, refers to both TorchOps.h.inc as well as
TorchTypes.h.inc. However, the build rules do not specify the
dependency of the `TorchMLIRTorchUtils` target on the TableGen generated
header files, causing spurious build errors.
This patch fixes the problem by adding `MLIRTorchOpsIncGen` and
`MLIRTorchTypesIncGen` to the list of dependencies of
`TorchMLIRTorchUtils`.
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
-- This commit adds e2e support for `aten.Mish` op.
-- `aten.Mish` op is decomposed as following :-
Mish(x) = x * Tanh(Softplus(x))
Signed-off-by: Abhishek Varma <avarma094@gmail.com>
Signed-off-by: Abhishek Varma <avarma094@gmail.com>
This commit adds lowering of `aten.div.int` and `aten.bitwise_or.Tensor`
ops. Both these ops are required in order to support bloom_560m model.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Summary of changes:
- Updated references to the Arith dialect
(https://reviews.llvm.org/D134762)
- Switched to prefixed accessors for MemRef dialect
(https://reviews.llvm.org/D134995)
- Fixed warnings about signed/unsigned comparisons, ignored return
values, and unused variables
* Fix c10::prim::Constant conversion; Added CAPI for passes; Added passes to base lazy backend
* Update ivalue_importer to use ImportOptions; Added tests for non-value/value tensor types
* Added tests for scalar Constant import; Updated MB::importFunction to use ImportOptions
* Test updates
* Move back module variable name
* Remove RefineTypes from TorchMlirLoweringContext::Build()
* Rename pass; Remove passes from base lazy backend
* Rename pass to VerifyBackendContractPass
* Aligned cmd pass name; Fixed TorchConversion passes registration
The auto-update of the PyTorch version broke the Torch-MLIR build
because it did not update the shape library. Going forward, we should
add the shape library update to the PyTorch version update action.
This commit adds support for TorchToTosa lowering of
`aten.broadcast_to` op for cases:
1.) When the rank of input and output tensor is equal.
2.) When the rank of input tensor is zero.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Strength the shape inference for aten.arange-like op by
1. registering aten.sub and aten.ceil.Scalar op and design folders for them.
2. register a new constant-like op: Torch::ConstantNumberOp and design canonicalizer for it.
This PR adds an `AllowedInModuleInitializer` trait to keep track of ops that are permitted in the module initializer. We have a handful of such ops that are produced by the IValue importer, and so this change avoids maintaining a list of ops in `TorchOps.cpp` that could lead to spurious merge conflicts, and help us integrate torch-mlir in our downstream compiler better. Please let me know if you'd prefer a better name for the trait itself. Feedback is welcome!
As @oroppas identified, literal strings that are over 16,380 characters
cause the MSVC compiler to throw an error (C2026), eventually causing
the Windows build of Torch-MLIR to fail because the length of the
generated MLIR for the shape library crosses the allowed threshold.
This patch fixes the problem by making the Python script generate one
literal string per line to satisfy the MSVC compiler.
Thanks to @oroppas for the bulk of the effort required to resolve this!
Summary of changes:
- Updated emitAccessorPrefix since the default value has changed
(https://reviews.llvm.org/D133179)
- Updated RefineTypes pass since Lattice::isUninitialized() is removed
(https://reviews.llvm.org/D132800)
- Updated MHLO tag so that it builds with the updated LLVM tag
- Disabled two tests that cause segfaults in the TOSA backend (see Issue
#1361)
* Add aten.frobenius_norm.dim op and init its conversion pattern to linalg and MHLO,
* run symbolic-shape-optimization before hlo-legalize-to-linalg to fit more mhlo e2e tests.
Summary of changes:
- Update the dataflow analysis in RefineTypes.cpp
- Add tosa-to-arith pass after tosa-to-linalg pass, since
tosa-to-linalg (and canonicalizations) can produce tosa.const() ops
- Fixed warning about not making `matchAndRewrite` as override
This commit adds decomposition of `aten.linear` op. Due to limited
support at tosa backend in case of dynamic dimensions, this
decomposition is currently disabled for tosa backend.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
We were already hitting many cases where backends different in terms of
the legal ops that they wanted. This caused unnecessary coupling between
the backends. Examples:
- https://github.com/llvm/torch-mlir/pull/1161
- https://github.com/llvm/torch-mlir/pull/862
This PR centralizes all compilation to go through `torch_mlir.compile`
so that we can keep the logic centralized there. We should move these
lists closer to each backend. Especially cases like
https://github.com/llvm/torch-mlir/pull/862 where blocking a
decomposition is necessary to avoid a crash emphasize that the set of
decompositions is tightly coupled to the backend, and should be
"controlled by the backend" and not something arbitrarily tweakable.
Also:
- Fix a small bug in the way we passed through the backendLegalOps
option.
- Add better error messages in `torch_mlir.compile` for import errors.
One of the simplifications made by the pass `RefinePublicReturn`
currently only happens if the tensor in question only has one
user. However, the current method of checking this does not correctly
handle the case of a user having multiple uses of the same
tensor. This commit makes sure only unique users are considered.
This is a first step towards formalizing the set of ops in our backend
contract. The goal is to eventually formalize `torch` dialect ops into 3
categories:
1. Legal in backend contract
2. Illegal in backend contract
3. Conditionally legal in backend contract
The "conditionally legal" set are the ops that we can optionally
decompose for backends.
This patch adds relevant pass options for this throughout the compiler,
in preparation for a new set of traits which will formalize this
classification.
I recently fixed the handling of the `dim` argument in
`sum_mean_dim` (59fccab857). Therefore,
the checks that the `dim` input is `None` or `[]` are no longer needed.
This introduces a new pass LowerToBackendContract (better name very
welcome) which performs the bulk of the simplifications that we do,
such as
- shape refinement
- dtype refinement
- maximizing value semantics
- inlining global slots
- decomposing complex ops
The key difference from before is that it iterates the set of
transformations, which can help to break a number of "catch-22" issues
where one simplification depends on another, the latest example being
here:
https://github.com/llvm/torch-mlir/issues/1131
This also exposed that RefineTypes was sometimes crashing/asserting for
certain inputs. This commit hardens it a bit.
Bumps the shape library:
- Updates the function signature for aten.arange.start_step
- upstream_shape_functions.mean_dim -> upstream_shape_functions.sum_mean_dim
The Torch dialect has an include to `mlir/Dialect/Func/IR/FuncOps.h` and
should therefore have a CMake dependency to the MLIRFuncDialect.
Otherwise, the build can fail since it may occur that
`mlir/Dialect/Func/IR/FuncOps.h.inc` isn't generated yet.
Summary of changes:
- Switch to C++17 (similar to https://reviews.llvm.org/D131348)
- Update MHLO to build with LLVM commit hash 061e0189
- Replace deprecated `hasValue()` and `getValue()` with `has_value()`
and `value()` respectively (https://reviews.llvm.org/D131349)
- Use `TypedAttr` (https://reviews.llvm.org/D130092)
- Use updated assembly format of `mhlo.compare` op (commit
d03ef01e70fbf9afd0fa1976fbb7ed31838929b3 in MHLO repo)
Rather than a per-global-slot initializer region, we now have one for
the whole module. For example, it might look like this:
```
torch.global_slot "private" @tensor : !torch.tensor
torch.global_slot "private" @list : !torch.list<tensor>
torch.global_slot.module_initializer {
%0 = torch.tensor.literal(dense<0.0> : tensor<f32>) : !torch.tensor
%1 = torch.prim.ListConstruct %0 : (!torch.tensor) -> !torch.list<tensor>
torch.initialize.global_slots [
@tensor(%0 : !torch.tensor)
@list(%1 : !torch.list<tensor>)
]
}
```
This new structure allows GlobalizeObjectGraph to create the initializer in a
much simpler way, avoiding the need to reason about whether different slots
alias each other. Reasoning about whether slots alias each other now is the
responsibility of InlineGlobalSlots, which has to do a much more complicated
analysis, implemented using MLIR's dataflow analysis framework.
Recommended review order:
- Check out the new IR constructs in the .mlir files of various passes
- Op definitions (*.td)
- Changes to GlobalizeObjectGraph pass.
- InlineGlobalSlots pass (~total rewrite)
- Misc changes:
- Moving torchMlirAdjustStaticInformation for sharing with C++ code.
- EraseModuleInitializer pass
To make this a bit nicer, it would be good to have a `torch.module` op
with an initializer region attached. That would be more invasive though.
This change has highlighted certain aspects of our project layering
which are worth calling out. None of our backends can handle global
slots, so we enforce that there are no global slots before backend
lowering. At an earlier stage in the project, we had aspirations of
transparently handling mutable global state and such, but for reasons
described below, that is no longer a goal. So really global slots should
be seen as a progressive lowering step as part of inlining all the
IValue's in the original program (GlobalizeObjectGraph is also one such
step).
Over time, with insights from work like IREE-JAX, it has become clear
that there isn't a reliable programming model we can compile for users
where we just transparently handle mutable global state (and some other
things, like lists and dictionaries). There is a need for an "outer
program" that orchestrates more restricted subroutines of the kind we
can handle in our compile flow here. The benefit of that is that it
decouples considerations like shapes, dtypes, etc. from the program
constructs used in the outer program. As long as the outer program can
efficiently invoke (pipelining/async/etc.) high-performance
data-parallel numerical subroutines of the kind we compile in our flow
here, then there is a complete programming model. This is also
consistent with the direction of upstream PyTorch which is becoming more
tracing-based (which inherently loses a lot of program structure, which
then has to be applied back with an "outer program" orchestrating the
traced subroutines).
follow up #761:
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is Float16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
PyTorch recently added support for `dim=None` in the `torch.var`
(5ca9b2b6fa)
and `torch.std`op (eb0e30e0bc).
This commit adds the corresponding support in torch-mlir.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
* [MHLO] Support for dynamic shape in basic op conversion by introducing CHLO dialect
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
* [MHLO] Support I32 as shape tensor dtype
* [NFC] Add a 'TODO' annotation
This commit fixes the shape calculation for:
1.) aten.mean.dim
2.) aten.var.dim
3.) aten.sum.dim_IntList op
Also, it fixes the lowering of `aten.mean.dim` and
`aten.sum.dim_IntList` for handling the cases of empty dim list.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com
- Includes a canonicalizer for `aten.add.t`needed for successfully lowering the shape function
- Only offers support for statically sized index tensors when there is more than one
- Dynamic shape support remains for single indexing tensors
This commit adds verifiers to the ops `ToBuiltinTensorOp` and
`FromBuiltinTensorOp` that make sure that the input and output have
the same shape and data type.
An upstream MLIR bug (that was recently fixed) caused the result to be
ignored for Region- and Block-visitor functions. Now that the bug is
fixed, we don't need an auxiliary boolean to track whether the visitor
function has succeeded.
The biggest change here is to upgrade RefineTypes to the new sparse
dataflow framework.
Smaller changes:
- minor changes to type parsing
- suppress warnings in e2e tests
This commit adds the decomposition for `aten.var.dim` op.
This commit also make changes in the decomposition for `aten.var` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This patch adds a new pass `torch-verify-conversion-to-value-semantics`,
which looks for non-value semantics tensors to catch such tensors early
during compilation.
This pass requires `torch-refine-public-return` pass to ensure that
return operations are updated to use value tensors, followed by the
canonicalize pass to remove any dead ops that may use or produce
non-value tensors.
Prior to this patch, the canonicalizers for `AtenSizeOp` and
`AtenSizeIntOp` succeeded only if the tensor operand's type information
included the size of the requested dimension(s). We can extend the set
of optimizable cases by propagating types across operations whose result
type matches the input tensor type.
Specifically, this patch enables the canonicalizers for `AtenSizeOp` and
`AtenSizeIntOp` to see past `tensor_static_info_cast`,
`copy.to_vtensor`, and `copy.to_tensor` ops until it reaches the first
op whose result type contains size information for the requested
dimensions, with a maximum bound of 6 parent lookups to avoid indefinite
compilation times. All other encountered ops cause the canonicalizer to
give up.
Prior to this patch, the code in the `torch-simplify-shape-calculations`
pass iterated on the uses of an op's result while also modifying the
value. This caused the iterator to get invalidated, thus terminating
the loop early and producing incorrect IR. This patch makes use of
`llvm::make_early_inc_range()` to ensure that the iterator is not
invalidated while executing the loop body.
This commit does three things:
1. Reverts some of the shape lib changes merged in
https://github.com/llvm/torch-mlir/pull/844
2. Updates the signature of `aten.sum_dim_IntList` that was recently
updated in
23bdb570cf
3. Replaces `aten.zero.functional` with `aten.zero`, updated in 960758b0b7
`aten.select_scatter` op.
This commit adds:
1. Lowering of `aten.slice_scatter` op into `tensor.insert_slice`
op.
2. Decomposes the `aten.select_scatter` op into `aten.slice_scater`
op.
Signed-Off-By: Prateek Gupta <gprateek93@gmail.com>
The canonicalizer converts `torch.prim.dtype` ops into integer constants
for valid types, but the type may not be known until type refinement is
complete. However, type refinement cannot make progress until
`torch.prim.dtype` ops have been resolved to their corresponding integer
constants, thus creating a circular dependency.
This patch creates a tight coupling between type refinement and the
lowering of `torch.prim.dtype` ops by handling such ops as they are
encountered during type refinement. The unit test in this patch aims to
check whether the type refinement pass can now handle chains of
operations that alternate between type construction and type refinement.
This patch replaces the use of raw integers like 6, 4, etc. (that
represent PyTorch's scalar types) with named values from the ScalarType
enum (e.g. `ScalarType::Float`, `ScalarType::Long`, etc.) in code for
folding `prim.dtype` ops into numeric constants.
This patch isn't strictly a non-functional change, since its use of
`Torch::getScalarTypeForType()` implies that the input type has to be
one among the supported types, otherwise compilation will abort, whereas
previously, compilation proceeded without folding the unsupported data
type into a numeric constant.
A prior patch (63538de2) that added support for bfloat16 type did not
add the canonicalization pattern to fold `torch.prim.dtype` operations
on bfloat16 tensors into the integer constant 15. This patch fixes the
problem.
In the `pyhpc_turbulent_kinetic_energy` TorchBench benchmark, the shape
calculation occurs inside loops, but because `DropShapeCalculationsPass`
does not explicitly mark the Torch dialect as legal, the pass execution
fails.
This patch adds Torch to the list of legal dialects, and adds a test to
validate the translation.
This commit fixes the shape function for `index.Tensor`, adding
support for multiple index tensors and `None`s in the indices
list. This commit also adds support for input tensors of rank greater
than 1. The lowering for `index.Tensor` still has the the limitation
that only a single index tensor along the first dimension of the input
tensor is supported.
Prior to this patch, the torch dialect included `AtenTriuOp` for
computing the upper triangular part of the input matrix, but there was
no code for lowering the op to the linalg dialect.
This patch adds code to generate a `linalg.generic` operation that
compares indices (computed using `linalg.index`) to choose between zero
or the original value (using `arith.select`). The lowering fails if the
number of dimensions are less than two. This patch also adds a few
end-to-end tests.
* [MLIR][TORCH] Add folder for torch_c.from_i64 & torch_c.to_i64
* add unit tests for each individual fold
* fix failure of NumelZeroRankModule & TestMultipleTensorAndPrimitiveTypesReturn
The MacOS builders are having linking trouble with the extension library.
Until it's fixed, all support for op extensions is disabled. It should be
easy to restore once the issue is resolved.
PyTorch allows new operators to be registered dynamically in modules.
Torch-mlir already makes it fairly straightforward to add support for
new operators, and this commit just extends that support to allow new
PyTorch ops to come from a external module.
This does *not* allow ops to be dynamically loaded into torch-mlir.
Torch-mlir must still be compiled with support built-in.
Add a `_torch_mlir_custom_op_example` subpackage to `torch_mlir` which
registers an demonstration op. It will not be imported by default when
importing torch_mlir. It's strictly for testing and documentation.
Adds an end-to-end test for the `torch_mlir_custom_op_example::identity` op.
With all these changes, we should now be actively testing PyTorch extension
support with all future patches.
Now that upstream exposes them nicely, we can use them.
I noticed that we had added stuff into the upstream_shape_helpers.py
file (which was supposed to stay pristine), so some more shape functions
need to be upstreamed.
Going forward, all shape functions should be upstreamed similar to
https://github.com/pytorch/pytorch/pull/76889 instead of added in this
file.
This commit adds lowering of `aten.div.Tensor_mode` op.
This commit also fixes formatting for the test file elementwise.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit decomposes `aten.baddbmm` op into `aten.bmm`,
`aten.mul.Scalar`, and `aten.add.Tensor` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The patch bumped up the LLVM tag made manual fixes to the code in
`ShapeLibrary.cpp`. However, since that file is generated by the
`update_shape_lib.sh` script, its contents were reverted each time the
script was run. This patch fixes the problem by removing the manual
changes to that file.
This commit adds the decomposition of `aten.adaptive_avg_pool2d` op into
`aten.avg_pool2d` op. The current decomposition only supports cases where
input size is equal to the output size.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
When compiling without assertions (i.e. in `NDEBUG` mode), a handful of
statements turn to NOPs, which results in warnings such as missing
return statement or unused variables and function. This patch replaces
such statements with `llvm_unreachable()`, which informs the compiler
about program termination regardless of the `NDEBUG` mode. This also
enables torch-mlir to be compiled using the flags `-Wall`, `-Wextra`,
`-Wpedantic`, and `-Werror`.
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function. It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.
There exist several opportunities to make this lowering optimal and
robust. For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf. For L1 norms, we don't need to raise
each element to the power 1.0. Similarly, L2 norms could benefit from
strength reduction. Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
In addition to updating the llvm-project submodule, this patch also:
1. updates shape functions and tests so that `func` and `call`
operations refer to the `func` dialect
2. avoid duplicate registration of dialects
The op `aten.rand_like` was missing a shape function, unit tests, and
the `dtype` argument was being ignored in its decomposition. This
commit fixes all three things.
Fix the type promotion code for scalar only operation to return
TorchType which is the type tracked in ValueKnowledge.scalarType.
- Fix `getPromotedResultScalarType` to return Torch type.
- Add `getBuiltInTypeForTorchScalar` helper to convert scalar type
to builtin type before passing to the next level type promotion
helper `updateResultTypeState`.
- Add `setScalarType` helper to make setting ValueKnowledge.scalarType
easier.