Added the dynamic registration of return function to the execution
engine. This makes sure that different/multiple return types are supported.
Also, updated the .style.yapf indentation to 4.
* shape: add shape transfer function for aten.neg
Prior to this patch, the list of shape transfer functions did not
include `aten.neg`, which resulted in errors like below.
```
error: unsupported by backend lowering: tensor with unknown rank or dtype
note: see current operation: %0 = "torch.aten.neg"(%arg0) :
(!torch.vtensor<[256,256],f32>) -> !torch.vtensor<*,f32>
note: this is likely due to a missing shape transfer function in shape_lib_gen.py
```
This patch fixes the problem by adding a shape transfer function to
reflect the point-wise nature of this operation.
* linalg: add translation of aten.neg operation
This patch adds a translation rule to lower `aten.neg` operations on
tensors to an `arith.negf` operation wrapped inside a `linalg.generic`
operation. This patch also adds a rudimentary test.
This commit adds lowering of `aten::max_pool2d_with_indices_backward` op.
This commit also fixes formatting issues in basic.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds the following support to the op `nll_loss_backward`:
- `input` tensor can be rank-1
- `weight` parameter
- `reduction` parameter
- `target`, `grad_output`, `total_weight` can be rank-0
- Checks that input tensors are of the expected type
This commit adds support for multi-dimensional tensors as input to the
`_index_put_impl_` op. The support was to some degree already there,
since `ScatterOp` already supports multi-dimensional tensors. This
commit also adds a bit more error checking to `index_put` and
refactors the code for creating `ScatterOp`s to mimic the way one
would make a `Linalg::GenericOp`.
The issue was in the canonicalizer for torch.aten.ge.int -- in cases
where the operands were swapped, it would miscompile. This issue is
fixed and folding support generalized to `torch.aten.size.int < 0` as
well.
Fixes#716
This commit decomposes different variants of `aten.where.*` op into
`aten.where.Self` op. It covers `aten.where.Scalar`,
`aten.where.ScalarSelf` and `aten.where.ScalarOther` ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.
This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287
Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
that derefines to a UnionType (this also fixes#664).
There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
The reified code to compute the shape of torch.aten.constant_pad_nd
uses negative indices when setting list elements. This was not
converted to a positive offset in one place in SimplifyShapeCalculations
which prevented computation of the static shape.
The logic in the rewriting phase had a bug in case of a read-only op
coming before mutation ops. The logic would use the op itself as the
"latest literal", but that is not correct, because later on we replace
the op itself with the *final* "latest literal", assuming that all uses
of the op have been rewritten -- that was working in general, except for
any read-only ops at the beginning.
Big thanks to @ljfitz for the tiny reproducer!
Fixes#704
This commit adds support for the cases of view op where the rank and
the shapes of the input and result are equal.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
In order to make sure that the TorchToLinalg conversions leave the
graph in a valid state, the final result of the conversion has to be
casted to the result type of the op. This commit adds this cast to ops
that did not have it.
- This commit adds decomposition of `aten.dropout` op. It also covers the
training mode of the same op.
- It also adds lowering of `aten.sub.float` op.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
The `assemblyFormat` stuff (which generates unrolled, per-op C++ code)
was taking up a lot of compile time, and all the ops are essentially
printed with the same logic. So this PR makes them all call the same
helper function. This is done by using
`let hasCustomAssemblyFormat = 1` and then implementing `FooOp::parse`
and `FooOp::print`.
Additionally, the `Generated*Ops.td` files are all collapsed into just
`GeneratedTorchOps.td` (there is no reason to have the files separate,
since the files are very large anyway so one is always having to search
within them -- editors don't care that the file to search is now a bit
bigger :) ).
This reduces TorchOpsODSGenerated.cpp compile time (which is now
GeneratedTorchOps.cpp) from 39 to 31 seconds on my machine. This is
actually less than I expected, but this PR is an overall cleanup to the
code anyway. The next step will be to introduce (better) functionality
upstream for sharding the TorchOps.cpp.inc file, so that we can truly
parallelize the O(#ops) costs. This is also necessary, because after
this PR, TorchDialect.cpp is now the slowest file to compile, due to the
`addOperations<... all the ops ...>` call, which needs to be shareded
too.
This commit adds the op `ValsemVariantAtenCopyOp` that represents
`AtenCopy_Op` without the underscore. This is needed to make sure
that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.
This commit also adds the lowering of `ValsemVariantAtenCopyOp`.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds support for type refinement when
`torch.tensor_static_info_cast`s are involved, even when there are
users of the casted tensor that don't allow type refinements.
Originally the canonicalization pattern for
`torch.tensor_static_info_cast` would check if all the users of the
casted tensor allowed type refinements before making any changes. This
means that if at least one of the users did not allow type
refinements, the pattern would fail. This becomes an issue when doing
shape calculations because the calculations need the shape information
of each input tensor to be available before the calculation can be
simplified.
This commit fixes the 2nd and 3rd return types of the `aten.native_layer_norm`.
Previously the mean and rSTD were returned with reduction dims removed.
This commit fixes this and keeps the reduction dims of the results.
Signed-Off-By: Prateek Gupta <prateek@nord-labs.com>
The ODS-generated code included via the `TorchOps.cpp.inc` file takes a
very long time to compile. This PR isolates it into its own file so that
the build system can cache it.
This PR creates a new file `TorchOpsODSGenerated.cpp` just to include
the `TorchOps.cpp.inc` file. Doing so required moving to the "new" way
to define verifiers, since the static `verify` free functions in
TorchOps.cpp weren't accessible from the .inc file after it was moved to
`TorchOpsODSGenerated.cpp`.
On my machine, this drops the build time of TorchOps.cpp (such as when
iterating on a canonicalizer) from >40 seconds to <10 seconds.
10 seconds still isn't great though, but at least it isn't "go get a
coffee" type of waiting.
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.
This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.
This commit also updates the `torch.bincount` op test cases.
The term "pseudo" is very vague and was getting confusing (I felt I had
to explain it in every comment referencing it). Instead, rework the
"pseudo" ops to instead be named:
- MLIR Syntax: `torch.valsem.*`
- C++ / ODS: `ValsemVariant*Op`
This makes it clear what the concept is, and avoids confusion with other
things that might be called "pseudo", since these are very specific and
should be 100% consistently named w.r.t. the non-valsem-variant ops that
they correspond to.
This is code that we always want to treat as "foreign" and not get too
comfortable using in many functions. One way to accomplish that is to
make it a bit clunkier to use.
Also, fix Utils.cpp to match the LLVM/MLIR coding conventions (don't
define functions inside namespaces -- prefer `using` and explicit
qualification).
This leads to much more succinct types in many cases:
```
!torch.list<!torch.int>
!torch.list<int>
!torch.tuple<!torch.list<!torch.int>, !torch.list<!torch.int>>
!torch.tuple<list<int>, list<int>>
!torch.optional<!torch.list<!torch.int>>
!torch.optional<list<int>>
!torch.list<list<list<tensor>>>
!torch.list<!torch.list<!torch.list<!torch.tensor>>>
```
I would like to take this further and allow omitting the `!torch.`
prefix in all cases, but that's harder -- for example, we currently use
`FuncOp` for functions, and so I don't think we can customize the
printing there. It seems like it will be a longer road to getting that
level of customization.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.
This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.
Recommended review order:
1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
`canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.
Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).
Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
This helps keep things organized and also exposes more parallelism to
the build system. It seems though that most of the compile time is
actually spent in the headers though, so the wall time doesn't decrease
as much as I had hoped (and now that the headers are being included
multiple times, the cpu time actually increases a lot, sadly -- will try
to dig into this).
This commit replaces the two rewrite patterns of
maximize-value-semantics with a single pattern that captures the
behavior of both as well as other edge cases previously not
supported. The new pattern works by first performing alias analysis on
a subgraph to see if pattern is applicable, then rewriting all
non-value tensors to value tensors in a single go.
This pass is added to lower ops, which can not be lowered
via the TorchToLinalg pass, such as `torch.bincount` op.
This pass also uses torch-mlir's TMTensor Dialect to lower the
complex ops.
Also add torch.bincount op lowering with the help of TMTensor dialect
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit moves the helper function which are common across
different torch-mlir conversion passes into a common directory
Utils.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds support for integer type inputs for
`AtenMaxOp`, `AtenSumOp`, `AtenSumDimIntListOp`.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
- This commit adds E2E support for `aten.rand_like` and
`aten.bernoulli_.Tensor` ops.
- The `aten.bernoulli(x)` was implemented as:
`aten.bernoulli(x) = rand_like(x) < 0.5`, assuming 0.5 as default
probability, whereas according to the pytorch documentation:
https://pytorch.org/docs/stable/generated/torch.bernoulli.html#torch.bernoulli
the input x in `aten.bernoulli(x)` is itself a tensor containing
probabilities to be used for drawing the binary random number.
- So this commit fixes the `aten.bernoulli(x)` implementation as:
`aten.bernoulli(x) = rand_like(x) < x`.
- It also fixes the case where the input to `aten.bernoulli_.float` is
an integer tensor. In this case the input must be casted to float type
before passing it as operand to `aten.rand_like` op.
`aten.bernoulli_.float(x, p) = rand_like(float(x)) < p`.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
The view op allows for the new shape argument to have a -1 value for
one of the dimensions, and the op is expected to deduce the size of
that dimension by looking at the sizes of the other dimensions and
comparing it to the total number of elements in the original
tensor. This commit adds this functionality.
This commit does a couple of things. First, it fixes a bug in the
`linalg.generic` body of the `nll_loss_forward` lowering where the
`ignoreIndex` was being compared with the loop index rather than the
current element of the `target` tensor. This was not being caught by
the tests because they were not testing the case where `ingnoreIndex`
actually corresponds to a value in `target`. This has been fixed.
Second, this commit adds support for the `reduction` argument in
`torch.nll_loss_forward` as well as support for 1-D inputs. In order
to simplify the lowering code, I've refactored the code that creates
the `linalg.generic` ops for elementwise and reduction ops into static
functions, to avoid having boilerplate code for indexing maps, etc
that can be very error prone.
Note: The function `convertScalarToDtype` was moved to before all the
conversion patterns, but nothing in it was modified.
This commit adds the invariant to the op `torch.overwrite.tensor.contents` that
both of its operands have the same shape and size. In order to
maintain the invariant, special handling of this op is added to the
`RefineTypes` pass.
This commit adds handling to the `maximize-value-semantics` pass for
the case where a view-like op depends on a tensor that has been
overwritten by a value tensor. The approach for removing the
dependency is to change the input to the view-like op to be a copy of
the value tensor that is being used to overwrite.
This commit also removes `AtenFill_ScalarOp` and
`AtenBernoulli_FloatOp` from the list of view-like ops, since these
ops now have a corresponding op with value semantics into which they
get converted in the `reduce-op-variants` pass.
- This commit decomposes the `aten.batch_norm` op into the
`aten.native_batch_norm` op, instead of lowering it to the
`linalg.generic` op.
- It also adds run-time asserts in the `aten.native_batch_norm` lowering
to make sure that the shape of the weight, bias, running_mean, and
running_var must match the num of features.
- Since the `aten.native_batch_norm` op is not supported at TOSA backend,
all the modules that are dependent on the `aten.native_batch_norm` op
will fail and therefore they should be removed from the TOSA `passing`
set.
- It also moves `checkNotNone` to utility.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This is intended to explore support for non-structured ops that can't
be modeled by Linalg dialect. `tm_tensor.scan` and `tm_tensor.scatter`
are added as the first such ops. The dialect should aim to be
upstreamed in the future.
This commit adds the op `PseudoAtenFillScalarOp` that represents
`AtenFill_ScalarOp` without the underscore. The approach is the same
as in commit dd998fa4d4.
Adding this op allows for a simpler and more consistent version of the
`empty` and `empty_like` op e2e tests.
- This commit adds lowering of `aten.le.Scalar` and `aten.ge.Scalar` ops
as a part of `convert-torch-to-linalg` pass.
- It also creates a new test script `elementwise_comparison.py` for all
element-wise comparison ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds the op `PseudoAtenBernoulliFloatOp` that represents
`AtenBernoulli_FloatOp` without the underscore. This is needed to make
sure that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value semantics
correctly.
- This commit adds lowering of `aten.eq.int` op as a part of
`convert-torch-to-std` pass.
- It also refactors the code for binary comparison ops lowering.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
- This commit adds lowering of `aten.Bool.Tensor` and
`aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
`aten.Float.Tensor` op, it folds to the scalar number.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Some of the lowerings use the result type obtained from the op itself
to tell the `linalg::GenericOp` what the type of the result should be
rather than using the type of the result tensor given to the
`linalg::GenericOp`. This becomes a problem when the result type of
the op has static size information and the result tensor used in
`linalg::GenericOp` has dynamic dimensions, for `linalg::GenericOp`
expects the result type to be equal to the type of the output tensor.
This commit replaces the use of the result type from the op itself
with the type of the result tensor passed to `linalg::GenericOp`.
In order to not create too many dynamic/static versions of the same
e2e test, e2e tests have only been added to the ops that currently
fail when used with static sizes.
* [tosa] Support for AtenNe[Tensor|Scalar]Op, AtenLog2Op,
AtenBitwiseAndTensorOp, AtenSquareOp and AtenThresholdOp
* Fix for Issue #532 - Mixed input types for few ops and updated few
tests to use i32 instead of i64
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
This commit fixes an error in the refine types pass of constant
allocation ops. The function used to set the dtype,
`fillInDtypeGivenDtypeAndDataType`, takes two torch types as arguments,
but a torch type and a standard MLIR type were being passed into it.
This commit also fixes the way the dtype was calculated in
`visitAtenToDtypeOp`. This op was also passing a standard MLIR type as
an argument to the `fillInDtypeGivenDtypeAndDataType`
function. Moreover, since the op `aten.to.dtype` has the dtype
argument as not optional, all that is needed is to match
against the int value to extract the dtype.
- This commit adds `aten.assert` op in the Torch dialect.
- The `aten.assert` op is lowered to `mlir::Assert` op.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
- This commit adds support for `aten.native_batch_norm` operation.
- The current implementation only supports inference mode of
`aten.native_batch_norm` op.
Signed-Off-By: Gaurav Shukla <gaurav@nod-labs.com>
The lowering of aten::nll_loss_backward op has been added
from torch to linalg dialect. The changes has been made as
a part of -torch-convert-to-linalg pass.
Signed-off-by: Prashant Kumar prashant@nod-labs.com
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
The added e2e maxpool testcase from #545 was not getting a static shape
due to an unfolded prim.If when RefineTypes was called. This was because
of unfolded torch.iaten.__is__ and torch.prim.unchecked_cast operators
with torch.derefine operands.
* [tosa] Support for AtenCeilOp and AtenReciprocalOp
* [tosa] Support for comparator ops, Aten[Gt|Lt|Eq][Tensor|Scalar]Op with scalar constant
* [tosa] Support for Scalar variants of Aten[Mul|Div|Add|Sub] Ops with scalar constants
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
- Common code as TF repository, being moved to MLIR core.
- Will support further legalizations to be published.
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
Note that to enable folding of the code coming from an example
like the ConstantPad2dStaticModule e2e test, support for other
operations had to be added/improved:
- aten::neg.int
- aten::eq.float
- aten::eq.str
- prim::Uninitialized
This commit adds lowering of `aten.threshold` op
This commit adds lowering of `aten.threshold_backward` op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This involes the following 2 parts:
- Change refine type to propagate more static shape info.
- Get as much static shape info as possible when creating the result
tensor when converting to linalg.
- This commit adds E2E support for `aten.ones_like` and
`aten.zeros_like` ops.
- Adds support for non-None `dtype` argument of `aten.empty_like` op.
- All the unit test cases related to constant tensor allocation like ops
are moved to a different file named `constant_alloc.py`.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds lowering of `aten.arange.start_step` op.
This commit decomposes `aten.arange` and `aten.arange.start` into
`aten.arange.start_step` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
- It folds `aten.to.dtype` when the input tensor type and result type
are exactly same.
- It folds `aten.view` when the rank of both the input tensor type and
result type is unity.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
We only handle the expanding OR collapsing cases, we do not handle
expanding And collapsing happening at the same time or cases where
it's neither collapsing nor expanding like view of [2,3] for
3x2 tensor.
It's assumed that if a shape list element is got from
`aten.size(tensor, dim)` the corresponding dim is not splitted or
collapsed. This assumption makes it easier to deal with dynamic shapes.
- Added E2E support for `aten.eq.Tensor` and `aten.lt.Tensor` ops. Both
the operands are expected to be of the same type, i.e., type promotion
is not addressed as a part of this commit.
- Added E2E support for `aten.eq.Scalar` and `aten.lt.Scalar` ops.
Tensor operand type to Scalar operand type promotion has not been
handled in this commit.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
The existing implementation of `ConvertConstantTensorAllocOp<>` requires
a C++17 feature `if constexpr ()`. This commit removes the use of that
feature to support the implementation even for lower C++ versions.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Add the required lowerings and correct test cases.
These op produce zero-d tensors and it was incorrectly mentioned in
refine types to produce 1d tensor of size 1.
- Templatize `aten.zeros` and `aten.ones` ops lowering.
- Add E2E support for `aten.empty` op.
- Add Integer type support in `aten.mul.Scalar` op lowering.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
`aten.gt.Tensor` op has been added in torch dialect and the
lowering of the op has been done to the linalg dialect.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
This commit adds support for aten.native_layer_norm operation. Here
the previous code for aten.layer_norm is tweaked a little bit to
accomodate both mean and variance values alongwith the layer norm
value. This commit also adds decomposition of aten.layer_norm into
aten.native_layer_norm, which was previously getting lowered directly
to linalg.
Signed-Off-By: Prateek Gupta<prateek@nod-labs.com>
This commit adds lowering of `aten.squeeze.dim` op into
`linalg.TensorCollapseShape` op. Here, the dim(th) dimension of the
input tensor is not supposed to be dynamic.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds lowering of `aten.gt.Scalar` and `aten.where.self` as a
part of element-wise ops lowering.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Support for passing memref of bool types as a function argument
and return is added in ref-backend.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
The op lowering has been added as a part of `torch-lower-to-linalg`
pass. This takes care of ignore_index but the weight and reduction
operand is still to be accounted for.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
- Supports variants with multiple dims, one dim, all dime
- Leverages legalize_common and legalize_utils code from
TensorFlow-TOSA work
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
There is an op name change that requires trivial changes.
Also, some of the warning has been fixed.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
Many reduction ops take as an argument an optional output dtype that
can change the type of the input tensor before the reduction is
performed. This commit adds support for the optional dtype flag that
had been previously ignored.
Test:
/tools/torchscript_e2e_test.sh -f 'ReduceSumDtype'
/tools/torchscript_e2e_test.sh -f 'ReduceSumDImIntListDtype'
This commit adds lowering of `aten.Squeeze` op into
`linalg.TensorCollapseShape` op. The size 1 dynamic dimensions are not
handled as a part of this commit.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This is to fold the common pattern from Bert inference like:
```
%111 = torch.prim.NumToTensor.Scalar %110 : !torch.int ->
!torch.vtensor<[],si64>
%112 = torch.aten.Int.Tensor %111 : !torch.vtensor<[],si64> ->
!torch.int
```
The lowering of aten.fill.Scalar has been added.
The changes have been made as a part of -torch-convert-to-linalg pass.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
This commit fixes a type promotion bug when NumToTensor was given a
float as an argument. In particular, the rules for type promotion of a
scalar vary depending on if the scalar is part of a tensor op or
not. NumToTensor falls under the second category, but it was being
treated as part of the first category.
aten.log_softmax_back_data op lowering and required
tests has been added. Some NFC have also been added.
Signed-off-by: Prashant Kumar prashant@nod-labs.com
This commit adds lowering of `aten.mul.Scalar` and also adds
decomposition of `aten.addmm` to `aten.mul.Scalar`, `aten.add.Tensor`
and `aten.mm` ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Now, aten::linear supports rank 3 inputs. This is a fix
for upcoming bert-inference task. The correct way should be
to support broadcasting in `aten.matmul` op and decompose
`aten.linear` into right ops.
This commit adds new operation `aten.gelu_backward` in the aten
dialect and adds lowering of this operation from aten to linalg.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
This change is to unblock the work of some backprop ops returning more
than one tensors. We will need to think of a more scalable approach
in the future if more flexible return types combinations are needed.
- Remove use of conversion construction macros
- Add mul and div op conversions
- Add corresponding tests
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
This is to facilitate scalar type conversion in the TorchToLinalg. As
part of adding the helper, this PR also:
- Updated `AtenAddTensorOp`, `AtenSubTensorOp` to use the helpers to
support more type variants.
- Added e2e type promotion testing.
- Added i32 memref return/arg type to support e2e testing.
Support for returning elemental types. Previously, only
memref types as returning types was supported. All the hacky ways
to write tests which return elemental types should be taken care of.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
The lowering of `aten.Int.Tensor` op has been added.
The changes has been made as a part of `convert-torch-to-linalg` pass.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
- This commit adds lowering of `aten.View` to `linalg.TensorExpandShape`.
- This lowering will be successful only when one or more static
dimensions are expanded.
- It also fixes a typo in `ConvertAtenFlattenUsingIntsOp` conversion
pattern.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>