Commit Graph

892 Commits (197ef4224bc41471acd4ccfd8694ed8e0842e716)

Author SHA1 Message Date
Jae Hoon (Antonio) Kim 8312fa535b Refactor Node Lowering (#914) 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim d9aee0d7a7 E2E HuggingFace Bert using LTC Backend (#912)
* Update native function definitions

* Add ops to support bert lowering

- Add empty_strided and as_strided

- Restore zeros_like to op blacklist (Without this, tensors will be unintentionally created with a CPU device rather than lazy)

- Check for composite implicit ops and add device data IR

- Also fix codegen for functionalization

* Add autogen to CMakeList

* Remove PyTorch submodule

* Reduced BERT model size

* Print Mark Step status in Torch MLIR LTC debug string

* Apply fixes to work with latest upstream/main

- Pass importOptions into getMlirTypeFromTorchType during NodeImporter::importNode

  Without this, the tensor type created may have a mismatched type as ImportOptions may cause vtensor to be used instead of tensor

* Update shape inference functions

- Fixed compute_shape_native_batch_norm when mean and var are uninitialized

  Previously, the number of shapes returned would be <3 if either mean or val was didn't exist. Instead, we now initialize them with a vector matching the number of channels.

- Implemented compute_shape_mul

- Fixed bug in reshape shape inference error message

* Get MLIR backend more consistent with TS backend

- Remove LazyNativeFunctions::_unsafe_view from autogen

- Blacklist ops to make JIT graph more like output of TS backend

- Print graph when SSA value has mismatch of types and results

- Remove normalize_index from LazyShapeInference

- Fix seeds for LTC example models

* Update and clean up shape inference functions

- Prune shape inference functions

- Add shape inference function for GenerateSlice

- Add shape inference function for GenerateCopy

Co-authored-by: Henry Tu <henry.tu@cerebras.net>
2022-07-30 09:40:02 -04:00
Henry Tu 0c35e607b3 Add static shape for scalar tensors (#833)
* Assume zero rank tensors are scalar

* Run RefineTypes pass on JIT Graph

* Rollback assumption that zero rank tensors are scalar

* Set numSizes to -1 for non-ranked tensors

* Rename RefineTypes to RefineTupleTypes
2022-07-30 09:40:02 -04:00
Henry Tu de5b380143 Bert example and relevant shape inference functions (#831) 2022-07-30 09:40:02 -04:00
Henry Tu 406d1e7538 Use JIT GraphExecutor for execution in example backend (#830)
* Update LazyShapeInference header

* Use JIT GraphExecutor for execution in example backend
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 1bde00c73d Fix LTC Decoupling (#815)
* Initial changes

* Fix up native functions

* Further fix decoupling

* Remove unnecessary ops

* Formatting and copyright banners:

* Add pytorch submodule
2022-07-30 09:40:02 -04:00
Henry Tu cca9fe126e Enable support for LTC Input/Output Mapping (#764)
* Save InputOutputAliases to TorchMlirComputation

* Implement GetResultShape for TorchMlirLoweringContext

* Use optional return type for GetResultShape

* Remove support for aten::detach

With this op enabled, tensors were being copied, which resulted in incorrect aliasing.

* Add newline before printing I/O alias mapping

* Changed printout to use "Input param" as label instead of "Input"

* Remote shape inference function for aten::detach

* Moved implementation of SetUpAlias to MlirLoweringContext

As part of this change, TorchMlirComputation has been moved to the end of mlir_lowering_context.h so that it can access some new structs in TorchMlirLoweringContext

* Use updated PyTorch API

* Remove GetResultShape

Complements this upstream PyTorch PR: pytorch/pytorch#75828

This PR adds support for mapping input and output tensors which alias each other. (e.g. maps input weight tensor in parameter to the same tensor in output after a training iteration)

MLIR: 
func @graph(%arg0: !torch.vtensor<[1,5],f32>, %arg1: !torch.vtensor<[1],si64>, ..., %arg6: !torch.vtensor<[10,5],f32>, %arg7: !torch.vtensor<[10],f32>, ...) {
  ...
  return %arg0, %arg1, %17, %23, ... : !torch.vtensor<[1,5],f32>, !torch.vtensor<[1],si64>, !torch.vtensor<[10,5],f32>, !torch.vtensor<[10],f32>, ...
}

Input/Output Alias Mapping: 
Output: 0 -> Input: 0
Output: 1 -> Input: 1
Output: 2 -> Input: 6
Output: 3 -> Input: 7
The aten::detach op has also been disabled in this PR to fix the issue of tensors not aliasing properly due to copying.
2022-07-30 09:40:02 -04:00
Antonio Kim 615ff1d31c Generate MLIR with shape information via LTC frontend (#742) 2022-07-30 09:40:02 -04:00
Henry Tu a605fe279c Add example Torch MLIR LTC Backend (#725) 2022-07-30 09:40:02 -04:00
Henry Tu 3e9b1cbd36 Added JIT to MLIR lowering (#724)
* Added JIT to MLIR lowering

Lowering to JIT is performed in a way similar to how it's done in the TS LTC backend. After a jit::Graph is constructed, it gets converted to a jit::Function, which is fed into the existing utility to generate an MlirModule in torch-mlir.

* Renamed `csrc/backend` to `csrc/base_lazy_backend`
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 65cf1465ef Fix Torch-MLIR LTC Backend based off latest PyTorch master (#723)
* Changes as a result of the LTC TS backend decoupling

* Fix bugs in BackendImpl and codegen

* Fix based on latest PyTorch master
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim c3b20e444c Got LTC working until compile (#689) 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 58338f79a1 Torch-MLIR LTC Backend Lowering Codegen (#621)
* Codegen and build LTC lowering

* Add LazyShapeInference header
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 2f22e2ef40 Add initial LTC backend (#610)
* Add initial LTC backend skeleton

* Disable CI build and move TorchMLIRPyTorch.cmake
2022-07-30 09:40:02 -04:00
PhaneeshB 8b5631d4c5 [MLIR][TORCH] Add decomposition for aten.std.dim Op
Signed-Off By: Phaneesh Barwaria <phaneesh@nod-labs.com>
2022-07-29 23:52:54 +05:30
Vivek Khandelwal 9a1203c844 Fix CI failure due to upstream PyTorch change in aten.mean.dim op
Fixes https://github.com/llvm/torch-mlir/issues/1121

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-07-29 17:19:22 +05:30
Vivek Khandelwal c681c3497a [MLIR][TORCH} Fix empty dim cases for the .dim ops
This commit fixes the shape calculation for:
1.) aten.mean.dim
2.) aten.var.dim
3.) aten.sum.dim_IntList op

Also, it fixes the lowering of `aten.mean.dim` and
`aten.sum.dim_IntList` for handling the cases of empty dim list.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com
2022-07-29 11:08:57 +05:30
Vivek Khandelwal d386b8f9e5 [MLIR][TORCH] Add decomposition for aten.var.correction op
This commit adds the decomposition for `aten.var.correction` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com
2022-07-29 11:08:57 +05:30
Vivek Khandelwal 7247c6a3a7 [MLIR][TORCH] Add E2E support for aten.ge.int op
This commit adds lowering of `aten.ge.int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-29 11:08:57 +05:30
Quinn Dawkins 11a8901078
[MLIR][TORCH] Add support for multiple indexing tensors for aten.index.Tensor (#1097)
- Includes a canonicalizer for `aten.add.t`needed for successfully lowering the shape function
 - Only offers support for statically sized index tensors when there is more than one
 - Dynamic shape support remains for single indexing tensors
2022-07-28 19:00:02 -04:00
Quinn Dawkins 3c9addf19c Add e2e support for aten.expm1 2022-07-27 12:31:35 +05:30
Kevin Kiningham e8f327cc00 Add lowering to linalg for softplus and log1p
Follows existing conventions for unary operators.
2022-07-25 21:25:57 +05:30
powderluv f424930a28
Add option to expose custom PyTorch repo/branch (#1103) 2022-07-24 20:08:48 -07:00
powderluv 31fd812acf
Add linux and macOS source builds in CI (#1070)
This enables building Pytorch from source in the CI.
The build should mostly hit the ccache.
Release builds will follow once we have some runtime on the CI.
2022-07-21 14:16:03 -07:00
Ashay Rane 72dd04cdb3
Revert "python: trim registration and loading of dialects and passes" (#1093)
This reverts commit ad283c1043, since it's
causing nightly build failures for all platforms.
2022-07-21 09:35:42 -07:00
Ashay Rane ad283c1043
python: trim registration and loading of dialects and passes (#1084)
In the interest of merging upstream LLVM quickly, a previous patch
(7f08169) updated the torch-mlir build to register all dialects and
passes through Python bindings.  This patch limits the dialects and
passes to only those that are used in torch-mlir.

Key to this change are the removal of
`MLIRPythonExtension.RegisterEverything` and the introduction of a new
Python module (`_mlir_libs/_site_initialize_0.py`), where we register
the dialects and passes used by torch-mlir.
2022-07-20 18:34:17 -07:00
Ziheng Jiang c61c99e887
[MHLO] Init MHLO integration. (#1083)
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-07-20 16:18:16 -07:00
Quinn Dawkins 647e75e029
Allow expanding and collapsing in aten::view (#1082)
- Supports cases where the view op expands and collapses dims
simulataneously. This does not handle the case where it is neither
expanding nor collapsing (e.g. [2, 3] -> [3, 2])
 - Additionally fixes a previous bug with adding 1-sized dims on both
sides of a tensor with aten.view
2022-07-20 17:35:51 -04:00
Kevin Kiningham 21f905afbe
Emit underscore version of aten.sqrt (#1072) 2022-07-18 23:57:47 -07:00
Quinn Dawkins c73a39e40a Add support for index.Tensor on dimensions other than the first
This patch still only supports a single indexing tensor.
2022-07-19 11:36:52 +05:30
Ashay Rane 7f08169380
bump llvm tag to 3580daa (#1078)
This patch makes some rudimentary changes to torch-mlir's use of MLIR
Python bindings to work with the most recent LLVM code.  We can perhaps
do better by being more selective in what we link against, instead of
using `MLIRPythonExtension.RegisterEverything`.
2022-07-18 16:49:03 -07:00
Vivek Khandelwal df0b1e77a4 [MLIR][TORCH] Add negative dim support for aten.cat and aten.slice op
This commit adds the support for negative dim cases for `aten.cat`,
`aten.slice.Tensor` and `aten.slice_scatter` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-18 14:01:33 +05:30
Sean Silva 795479a88d Remove HasValueSemantics from `is` ops. 2022-07-15 17:03:17 -07:00
Maksim Levental d70bb68c9e
Add named exception TorchMlirCompilerError. (#1064) 2022-07-15 16:32:36 -05:00
Ramiro Leal-Cavazos afdaa60dd4
Fix typo in `inputRank` check of `AtenBatchNormOp` (#1046)
The original conversion pattern for `AtenBatchNormOp` required that
the input rank be greater than 2; however, the only
expectation in the conversion pattern and in Pytorch is that the input
rank is greater than 1, since the second dimension of the input must
match the size of the `weight`, `bias`, `runningMean`, and
`runningVar` inputs. This commit fixes the `inputRank` check.
2022-07-15 09:35:59 -07:00
Vivek Khandelwal 3589134d31 [MLIR][TORCH] Add decomposition for aten.var.dim op
This commit adds the decomposition for `aten.var.dim` op.
This commit also make changes in the decomposition for `aten.var` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-15 09:53:42 +05:30
powderluv 479a8a8963
Remove libtorch downloads (#1058)
Remove all the libtorch downloads. If the user sets
-DTORCH_MLIR_USE_INSTALLED_PYTORCH=OFF then just build from src.

Doesn't change developer workflow since we still default to local
PyTorch versions.

TEST: Build and verify all tests (except one xfail quant) pass on linux
2022-07-14 17:16:51 -07:00
Maksim Levental 1bb990afc7
Speed up libtorch build. (#1031) 2022-07-11 20:46:49 -05:00
Ramiro Leal-Cavazos 11148e60d6
Undo shape lib changes + update function signature of sum + zero (#1035)
This commit does three things:
  1. Reverts some of the shape lib changes merged in
  https://github.com/llvm/torch-mlir/pull/844
  2. Updates the signature of `aten.sum_dim_IntList` that was recently
  updated in
  23bdb570cf
  3. Replaces `aten.zero.functional` with `aten.zero`, updated in 960758b0b7
2022-07-11 10:56:12 -07:00
Prateek Gupta 2d75654b2c [TORCH][MLIR] Add lowering of `aten.slice_scatter` and
`aten.select_scatter` op.

This commit adds:
1.  Lowering of `aten.slice_scatter` op into `tensor.insert_slice`
op.
2. Decomposes the `aten.select_scatter` op into `aten.slice_scater`
op.

Signed-Off-By: Prateek Gupta <gprateek93@gmail.com>
2022-07-11 14:07:21 +05:30
George Petterson a08ff0d7f2 Add lowering for _convolution 2022-07-11 11:03:03 +05:30
Sean Silva 93f1c3138b torch_mlir.compile: Allow OutputType as a string.
A lot of code was super verbose with `torch_mlir.OutputType.XYZ`. Now,
you can simply do `"xyz"`. I updated a few examples.
2022-07-08 17:37:27 -07:00
Sean Silva 5bd9362c61 Remove mention of upstream_shape_helpers
There were some leftovers.
2022-07-08 14:43:55 -07:00
Henry Tu 3ad810a1fb
Update CMakeLists.txt (#1028) 2022-07-08 16:45:52 -04:00
powderluv f202ae0012
Revert to using local PyTorch binaries (#1024)
Temporarily revert to using PyTorch binaries until source builds
are ready to land.

TORCH_MLIR_USE_INSTALLED_PYTORCH can be turned to OFF if you want
to link against libtorch and/or source builds.
2022-07-07 15:42:08 -07:00
Quinn Dawkins f0c3b5a7ed
Add E2E support for aten.len.str (#969) 2022-07-07 10:41:55 -07:00
Ashay Rane 874fdb7e42
build: improve robustness of cmake and shell scripts (#1018)
On my local machine, `unzip` didn't exist (producing a "command not
found" error), but CMake ignored the error.  Although the build did
succeed (because it found a previously-built version of libtorch), it
seems better to abort builds on such failures, so this patch checks the
return code of all external process invocations.

Along similar lines, this patch also updates the shell scripts in
`build_tools` to extensively use double-quoting to prevent unintentional
word splitting or globbing.  Since some of the scripts execute `rm`
while using shell variables, this patch also adds the preamble `set -u`
to abort execution if an undefined variable is referenced, so that we
reduce the chances of executing `rm -rf /` if the path expression
happens to refer to an undefined variable.
2022-07-06 14:39:30 -07:00
powderluv 33bfeda4c5
Enable libtorch caching and source builds (#1004)
Add an option to cache libtorch/ releases if you don't want to
download the latest. Add an option to enable source builds.

TESTS:
macOS: verify with / without cache downloads
       verify source builds -- shared and static

Linux: Build Tests and Release builds
2022-07-05 10:25:43 -07:00
powderluv be3d14cf76
Fix multi-threaded tests on macOS (#1005)
Fixes https://github.com/llvm/torch-mlir/issues/994
2022-07-05 00:05:36 -07:00
Tanyo Kwok d4f1f41435
[MLIR][TORCH] Add decomposition of aten.repeat (#932)
* [MLIR][TORCH] Add decomposition of aten.repeat

* refine & rebase

* refine static shapes

* add e2e test

* Rebase and Refine naming style
2022-07-01 13:02:31 +08:00
Ramiro Leal-Cavazos f204210266
[LINALG] Fix handling of size-1 dims in `aten.view` again. (#992)
A previous fix to the handling of size-1 dims in
`aten.view` (https://github.com/llvm/torch-mlir/pull/962) resulted in
the wrong grouping of dimensions when size-1 dims where between two
dims of size greater than 1. This commit fixes that.
2022-06-30 16:39:25 -07:00
Ashay Rane f947443f98
python: lower `prim::{Load,Store,Enter,Exit}` nodes to torch dialect (#983)
TorchScript nodes like `prim::Load` and `prim::Store` aren't supported
in torch-mlir because they can't be lowered to backends, but such nodes
can occur in the TorchScript IR.

This patch adds a rudimentary translation from such nodes to
corresponding ops in the Torch dialect.  Since we expected such nodes to
go away during lowering because of the SymbolDCE pass, this patch does
not add code to lower these ops beyond the Torch dialect.
2022-06-30 13:17:35 -07:00
Suraj Sudhir bb576c2cb3
[tosa] aten.embedding op support (#991)
Enables BERT legalization.

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2022-06-30 13:13:52 -07:00
powderluv 2b52da951b
Link against libtorch (#955)
This moves torch-mlir to link against libtorch on macOS and linux

TESTS: Tests pass. Tested release builds on linux and macOS
2022-06-30 12:40:17 -07:00
Sean Silva 227dea7b2e Add support for ScalarType::QUInt8
I ran into this while poking around at
https://github.com/llvm/torch-mlir/issues/959
2022-06-29 15:33:28 -07:00
powderluv cd79538a0c
Update test to pass with newer versions of tanh (#990) 2022-06-28 20:28:13 -07:00
Tanyo Kwok 5fbf2a376c
fix export torch.literal on gpu (#10) (#985) 2022-06-29 10:10:34 +08:00
JakopinA 5888c4f7dc Added E2E support for torch::aten.__contains__int_list 2022-06-27 19:30:00 +05:30
Gaurav Shukla 1be604bfd3 [LINALG] Lower `aten.Matmul` to `linalg.BatchMatmul`
This commit lowers `aten.matmul` to `linalg.BatchMatmul` under the
following conditions:
1. The result of matrix multiplication must have batch dimensions,
   i.e., rank greater than 2.
2. The resultant matrix must have at most 1 dynamic batch dimension.

It also handles broadcasting of batch dimensions when batch dimensions
of the matrices are broadcastable.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-06-25 10:58:06 +05:30
Ramiro Leal-Cavazos 400fecc1e5
[LINALG] Fix shape function of index.Tensor + support N-rank inputs (#972)
This commit fixes the shape function for `index.Tensor`, adding
support for multiple index tensors and `None`s in the indices
list. This commit also adds support for input tensors of rank greater
than 1. The lowering for `index.Tensor` still has the the limitation
that only a single index tensor along the first dimension of the input
tensor is supported.
2022-06-24 09:45:44 -07:00
Ashay Rane 234fc7fe0c
linalg: lower `aten.triu` op to `linalg.generic` (#965)
Prior to this patch, the torch dialect included `AtenTriuOp` for
computing the upper triangular part of the input matrix, but there was
no code for lowering the op to the linalg dialect.

This patch adds code to generate a `linalg.generic` operation that
compares indices (computed using `linalg.index`) to choose between zero
or the original value (using `arith.select`).  The lowering fails if the
number of dimensions are less than two.  This patch also adds a few
end-to-end tests.
2022-06-23 22:45:48 -07:00
erman-gurses 5cff40c88a Add canonicalization for aten.add.tensor op 2022-06-23 17:24:59 -04:00
Maksim Levental 829717c96e
Bump LLVM (#958) 2022-06-22 22:23:46 -05:00
Ramiro Leal-Cavazos 8b94759303
[LINALG] Fix handling of size-1 dims in `aten.view` (#962)
This commit adds support for several size-1 dims in a row in an
expansion using `aten.view`.
2022-06-22 15:58:40 -07:00
Vivek Khandelwal 77ab31641f [MLIR][TORCH] Add decomposition of aten.numpy_T op
This commit adds the decomposition of `aten.numpy_T` op into
`aten.t` or `aten.permute` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-16 00:01:22 +05:30
Vivek Khandelwal 4605dc9c99 [MLIR][TORCH] Add support for bool type in convertScalarToDtype utility
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-16 00:00:47 +05:30
Albert Sandru 708a51ae2e Add E2E support for aten.is_floating_point 2022-06-15 11:54:00 -05:00
Ramiro Leal-Cavazos 246c2df65a
[LINALG] Fix typo in conversion pattern of `aten.embedding` (#942) 2022-06-15 09:45:10 -07:00
Vivek Khandelwal aed5517fda [MLIR][TORCH] Add integer dtype support for aten.rsub.Scalar op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-15 16:46:28 +05:30
Bob Adolf b90837ee24
Temporarily revert support for custom op extensions. (#944)
The MacOS builders are having linking trouble with the extension library.
Until it's fixed, all support for op extensions is disabled. It should be
easy to restore once the issue is resolved.
2022-06-14 18:24:40 -07:00
powderluv 8fd084377d
Update CMakeLists.txt 2022-06-14 14:46:52 -07:00
powderluv dfc6f7c547
Update CMakeLists.txt
Emergency fix to unblock the nightly Release builder
2022-06-14 14:38:35 -07:00
Ramiro Leal-Cavazos 93f6d8e776
[LINALG] Add 0-rank case for `aten.permute` (#940)
The function `AffineMap::inferFromExprList` does not work if the first
vector of expressions is empty, because it uses these expressions to
obtain the context. This prevented `aten.permute` from working for
inputs of 0-rank. This commit adds support for 0-rank inputs.
2022-06-14 12:50:46 -07:00
Vivek Khandelwal 33fa8e7761 [MLIR][TORCH] Add decomposition of aten.floor_divide op
This commit adds the decomposition of `aten.floor_divide` op into
`aten.div.Tensor_mode` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-14 08:56:25 +05:30
Tanyo Kwok 0d4445eaf9
Fix: 0 sizes tensor being regarded as unknown rank (#923) 2022-06-14 09:58:50 +08:00
Bob Adolf 0a7ba62438
Allow torch-mlir to support PyTorch extensions. (#895)
PyTorch allows new operators to be registered dynamically in modules.
Torch-mlir already makes it fairly straightforward to add support for
new operators, and this commit just extends that support to allow new
PyTorch ops to come from a external module.

This does *not* allow ops to be dynamically loaded into torch-mlir.
Torch-mlir must still be compiled with support built-in.

Add a `_torch_mlir_custom_op_example` subpackage to `torch_mlir` which
registers an demonstration op. It will not be imported by default when
importing torch_mlir. It's strictly for testing and documentation.

Adds an end-to-end test for the `torch_mlir_custom_op_example::identity` op.

With all these changes, we should now be actively testing PyTorch extension
support with all future patches.
2022-06-13 14:51:30 -07:00
powderluv 02b917f769
Change to the real PackedParams.h location (#929)
Also update the PyTorch nightly URL
2022-06-10 14:43:52 -07:00
powderluv 4cdf4e7d47
Fix new location for PackedParams.h (#928)
Looks like they renamed it in location
2022-06-10 14:30:31 -07:00
Tanyo Kwok e70d4f732d
Fix class_annotator_pybind.h header guard (#924)
merging to unblock builders
2022-06-10 11:58:26 -07:00
powderluv 6615add806
Fix the new header location (#926)
Seems to have moved in the latest nightly
2022-06-10 11:57:58 -07:00
Maksim Levental 5c85ac3100
Handle `nn.Linear(..., bias=False)` case for TorchToLinalg (#919) 2022-06-08 21:13:43 -05:00
Henry Tu 298d095acf
Use double quotes instead of single quotes (#918) 2022-06-08 15:00:56 -04:00
Henry Tu c1da9edcf0
Generate underscore variant of functional ops (#915)
* Generate underscore variant of functional ops

* Do not apply `IsTrailingUnderscoreInplaceVariant` trait to underscore variant of functional op
2022-06-08 14:27:36 -04:00
Tanyo Kwok bd53998da8
Remove pybind deps from importer and annotator (#903)
* Remove pybind deps from importer and annotator
* Rename files to class_annotator_pybind.cpp/.h
2022-06-08 10:12:05 +08:00
Sean Silva e1b38e74dd Use upstream shape functions directly.
Now that upstream exposes them nicely, we can use them.

I noticed that we had added stuff into the upstream_shape_helpers.py
file (which was supposed to stay pristine), so some more shape functions
need to be upstreamed.

Going forward, all shape functions should be upstreamed similar to
https://github.com/pytorch/pytorch/pull/76889 instead of added in this
file.
2022-06-07 11:15:03 -07:00
Ramiro Leal-Cavazos 22c0893ec6
Update debug options in compilation errors (#913)
The flag for printing the IR after each pass is now prefixed with
"mlir". This commit updates the flag in the error reporting for the
compiler.
2022-06-07 10:55:54 -07:00
Vivek Khandelwal b95b3d844d [MLIR][TORCH] Add E2E support for aten.div.Tensor_mode op
This commit adds lowering of `aten.div.Tensor_mode` op.
This commit also fixes formatting for the test file elementwise.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-07 22:26:44 +05:30
Vivek Khandelwal a11ef674a7 [MLIR][TORCH] Add E2E support for aten.baddbmm op
This commit decomposes `aten.baddbmm` op into `aten.bmm`,
`aten.mul.Scalar`, and `aten.add.Tensor` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-07 22:26:28 +05:30
Jae Hoon (Antonio) Kim fe784fd900
Add Support for aten::scatter_add (#906) 2022-06-06 15:02:45 -04:00
Jae Hoon (Antonio) Kim 8a1839a17e
Add support for aten::arange.start_out (#905) 2022-06-06 15:02:27 -04:00
Vivek Khandelwal 2718b4d838 [MLIR][TORCH] Add E2E support for aten.clamp_[min|max] op
This commit decomposes `aten.clamp_min` and `aten.clamp_max` op
into `aten.clamp` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-06-06 11:52:29 +05:30
Sean Silva ccc858f531 torch_mlir.compile: Fix API footgun
use_tracing=True was behaving unexpectedly because the handling of
single arguments was happening after the torch.jit.trace call.

This also fixes the check to specifically test for a torch.Tensor or
TensorPlaceholder so that both lists and tuples would be correctly
handled.
2022-06-05 18:10:07 -07:00
Vidush Singhal fc419b1e7d
Add E2E support for AtenLogicalOrOp. (#883) 2022-06-03 16:21:03 -07:00
Henry Tu abf5c94a1b
Replace valsem.aten.zero with aten.zero.functional (#893) 2022-06-03 16:27:31 -04:00
Henry Tu 650f5a5008
Added support for native_dropout_backward (#892) 2022-06-03 14:08:51 -04:00
Henry Tu b7082a8d4e
Added support for native_dropout (#891) 2022-06-03 14:05:57 -04:00
Henry Tu a635fd2287
Added support for native_batch_norm_backward (#890) 2022-06-03 13:49:02 -04:00
Henry Tu bfe8ff4b42
Added support for embedding_dense_backward (#889) 2022-06-03 13:33:43 -04:00
Henry Tu a29903dfc8
Added support for native_layer_norm_backward (#888) 2022-06-03 13:15:23 -04:00
Vidush Singhal 0a913bc904
Add E2E support for AtenAllBoolOp (#874) 2022-06-01 18:20:25 -07:00
Vivek Khandelwal 6f548fc3ad [MLIR][TORCH] Add decomposition of aten.adaptive_avg_pool2d op
This commit adds the decomposition of `aten.adaptive_avg_pool2d` op into
`aten.avg_pool2d` op. The current decomposition only supports cases where
input size is equal to the output size.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-27 07:56:37 +05:30
Ramiro Leal-Cavazos b76c8c82dc
Emit `aten.unsqueeze` with mutating variants (#873)
The op `aten.unsqueeze` has a mutating variant. This commit adds
support for that variant.
2022-05-26 19:19:38 -05:00
Maksim Levental cec5aeedb0
add ci tests (#754) 2022-05-25 14:59:59 -05:00
Vivek Khandelwal 56e77d4213 [MLIR][TORCH] Add E2E support for aten.Bool.[float|int] op
This commit adds lowering of `aten.Bool.float` and `aten.Bool.int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-24 21:18:34 +05:30
Vivek Khandelwal 014a6d16c7 [MLIR][TORCH] Add E2E support for aten.any.bool op
This commit adds lowering of `aten.any.bool` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-24 17:24:28 +05:30
Vivek Khandelwal bc9b2156e3 [MLIR][TORCH] Add E2E support for aten.sqrt.int op
This commit adds lowering of `aten.sqrt.int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-24 16:50:39 +05:30
Ashay Rane f18b2be911
torch,linalg: add support for translating aten.linalg.vector_norm (#839)
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function.  It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.

There exist several opportunities to make this lowering optimal and
robust.  For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf.  For L1 norms, we don't need to raise
each element to the power 1.0.  Similarly, L2 norms could benefit from
strength reduction.  Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
2022-05-19 15:48:15 -07:00
Sean Silva 2af53ce434 torch_mlir.compile: Add OutputType.RAW
This can help with development and reporting bugs.
2022-05-19 03:41:43 -07:00
Sean Silva ef9e4c95f2 torch_mlir.compile: add support for dynamic sizes.
We do this by inroducing a TensorPlaceholder class, which can be used to
specify dynamic sizes. Internally, we canonicalize all example inputs
to TensorPlaceholder's.

This commit also adds some basic testing, which was missing before.
2022-05-17 07:02:32 -07:00
Ashay Rane bb52a460cb
mlir: bump llvm tag to 5380e3 (#856)
In addition to updating the llvm-project submodule, this patch also:

1. updates shape functions and tests so that `func` and `call`
   operations refer to the `func` dialect
2. avoid duplicate registration of dialects
2022-05-16 12:54:35 -07:00
Ramiro Leal-Cavazos 96f90efd16
Add shape info to `rand_like` + support for `dtype` flag (#851)
The op `aten.rand_like` was missing a shape function, unit tests, and
the `dtype` argument was being ignored in its decomposition. This
commit fixes all three things.
2022-05-12 16:00:59 -07:00
Yi Zhang ec0e9e0bc7 Add -s flag to run e2e tests sequentially
A user might want to avoid the extra layer of multiprocessing libary for
debugging purpose. In such cases, the -s flag can be used to force
sequential execution.
2022-05-11 21:16:41 -04:00
Vivek Khandelwal f15d257aac [MLIR][TORCH] Add support for ceil_mode = true for pooling ops
This commit adds support for aten.max_pool2d, aten.max_pool2d_with_indices,
and aten.avg_pool2d op for the cases where ceil_mode = true.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-11 12:52:47 +05:30
Vivek Khandelwal c69a1e5688 [MLIR][TORCH] Add E2E support for ScalarImplicit, Int.Scalar op
This commit adds lowering of `aten.ScalarImplicit` and `aten.Int.Scalar` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-10 22:40:49 +05:30
Prashant Kumar 12b3af70d3 [TORCH] Add folding of aten.detach op.
`aten.detach` op is folded and returns the first operand since it's an
identity function(kind of identity just remove the has_grad attribute).
2022-05-10 21:54:45 +05:30
Prashant Kumar 2b1b0f6e19 [LINALG] Add support for preserve memory format in aten_empty_like op.
The preserve memory specifies that `If any of the input tensors is in channels_last format,
operator output should be in channels_last format` and hence can be
added as is in aten_empty_like op.
2022-05-10 09:37:55 +05:30
Yi Zhang 5a6210b35b Workaround to make CI pass 2022-05-09 12:56:20 -04:00
yuhao 2e6a9c084e Update torch_mlir_tensor.py
typo
2022-05-07 21:46:10 -04:00
Yi Zhang 28be6511d2 Fix type promotion code for scalar only operations
Fix the type promotion code for scalar only operation to return
TorchType which is the type tracked in ValueKnowledge.scalarType.

- Fix `getPromotedResultScalarType` to return Torch type.
- Add `getBuiltInTypeForTorchScalar` helper to convert scalar type
to builtin type before passing to the next level type promotion
helper `updateResultTypeState`.
- Add `setScalarType` helper to make setting ValueKnowledge.scalarType
  easier.
2022-05-07 10:37:21 -04:00
Vivek Khandelwal b20679e1b8 [MLIR][TORCH] Modify aten::dropout op description
Signed-Off By: Vivek Khandelwal vivek@nod-labs.com
2022-05-06 11:15:52 +05:30
Yi Zhang 2ed90741eb Make e2e testing parallel
This change makes the e2e testing parallel using the multiprocessing
python module.
2022-05-05 21:27:58 -04:00
Vivek Khandelwal 96fabc0036 [MLIR][TORCH] E2E support for [ge|ceil].float, [ge|ne|gt].float_int op
This commit adds lowering of `aten.ge.float`, `aten.ge.float_int`,
`aten.ne.float_int`, `aten.gt.float_int` and `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py and scalar_comparison.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-05 21:48:35 +05:30
Yi Zhang 9f7264a7a4 Add support for scalar type propagation
The main changes are:
- Added `ValueKnowledge.scalarType` to track scalar type information.
- Added `ValueKnowledge.kind` to indicate the value kind.
- Modified the meet and join helper functions. The ValueKnowledge has
slightly more complicated state now so the meet and join function need
to look at the `kind` field in addition to just the type field.
2022-05-04 16:57:56 -04:00
Gaurav Shukla 4b911ada40 [LINALG] Add E2E support for `aten.mean.dim` op
- This commit adds support for `aten.mean.dim` op.
- It also adds a new test script `stats.py` for statistics related ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-05-04 20:11:42 +05:30
Sean Silva ab5ad7af09 Add tracing suport to `torch_mlir.compile`.
This also has a fix for the adjustment of types of TupleConstruct
inputs, which I found when using this new functionality on a model.

Some scenarios in tracing create situations where the output of
TupleConstruct has a more refined type than the inputs.

This introduces a helper `adjustStaticInformationForValues` which
subsumes the `derefineValues` helper and the tensor static information
adjustment we were doing.
2022-05-03 09:08:40 -07:00
Vivek Khandelwal c0634bc996 [MLIR][TORCH] Add E2E support for aten.to.dtype_layout op
This commit decomposes `aten.to.dtype_layout` op into `aten.to.dtype` op.
This commit also fixes the formatting for the file type_conversion.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-03 12:48:58 +05:30
gpetters94 c4dcdd1e34
Add aten.flip (#817) 2022-05-02 16:01:15 -04:00
Vivek Khandelwal 8a06419980 [MLIR][TORCH] Add E2E support for aten.masked_fill.Scalar op
This commit adds lowering of `aten.masked_fill.Scalar` op.
This commit also fixes the formatting of the file constant_alloc.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-02 22:27:33 +05:30
Vivek Khandelwal 4b11284440 [MLIR][TORCH] Add E2E support for aten.avg_pool2d op
This commit adds lowering of `aten.avg_pool2d` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-05-02 12:31:44 +05:30
Prateek Gupta 81ee5bb58c [TORCH][MLIR] Fix ConstantPad2dStaticModule test.
This commit fixes the `ConstantPad2dStaticModule` test case by adding
the lowering of `aten.pad` operation. Previously the test case
mapped to `aten.constant_pad_nd` operation.
The `aten.pad` now decomposes into `aten.constant_pad_nd` operation.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2022-04-29 21:57:01 +05:30
Ashay Rane 809f240f01
importer: add initial support for loading BFloat16 tensors (#761)
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is BFloat16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
2022-04-29 09:01:49 -07:00
Prateek Gupta e1db318a3c [TORCH][MLIR]Add lowering for control flow operations.
1. This commit adds lowering of "while-like" prim loop to scf.while
operation.
2. Adds lowering of "for-like" prim loops to scf.for operation.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2022-04-29 16:25:58 +05:30
Yi Zhang 7be9783f16 Fix the input tensors inplace update issue for e2e tests
Fix the inplace update tensor issue we had
where the torchscript execution would update the input value inplace
resulting the actual test not being able to see the original input
value.
2022-04-28 11:43:54 -04:00
Sean Silva 44c7b181d3 Revert "[MLIR][TORCH] Add E2E support for aten.ge.float op"
This reverts commit 564734b2d7.
2022-04-28 07:49:58 -07:00
Sean Silva eff144c0b7 Revert "[MLIR][TORCH] Add E2E support for aten.ge.float_int op"
This reverts commit 1f102cc400.
2022-04-28 07:49:58 -07:00
Sean Silva 7669ee4e4a Revert "[MLIR][TORCH] Add E2E support for aten.ne.float_int op"
This reverts commit 51dd462592.
2022-04-28 07:49:58 -07:00
Sean Silva 5ef9f501fa Revert "[MLIR][TORCH] Add E2E support for aten.ceil.float op"
This reverts commit 78f5747568.
2022-04-28 07:49:58 -07:00
Vivek Khandelwal ab0eafb617 [MLIR][TORCH] Add test cases for index_put op and fix formatting for index_put.py
This commit adds more test cases `aten::index_put` op.
This commit also fixes formatting issues with the test file index_put.py

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-28 13:41:47 +05:30
Vivek Khandelwal e57e1968bc [MLIR][TORCH] Add E2E support for aten.index_put.hacked_twin op
This commit decomposes `aten.index_put.hacked_twin` op into
`valsem.aten.index_put_impl` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-28 13:41:47 +05:30
Vivek Khandelwal 78f5747568 [MLIR][TORCH] Add E2E support for aten.ceil.float op
This commit adds lowering of `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-28 11:49:35 +05:30
Yi Zhang 86eb493a44 Change to AnyTorch* except for Torch_X ones 2022-04-27 14:18:52 -04:00
Bob Adolf 0667a5b3ae
Expand checks against PyTorch C++ ABI settings. (#777)
Compiling torch-mlir against a source version of PyTorch or an official
wheel compiled with the new C++ stdlib ABI fails, as torch-mlir doesn't
know how to set compiler flags to remain compatible. This changes the
way torch-mlir looks at PyTorch and tries to more closely match the ABI
settings, regardless of whether it's the common official wheel or some
other version.
2022-04-27 10:44:46 -07:00
Vivek Khandelwal 51dd462592 [MLIR][TORCH] Add E2E support for aten.ne.float_int op
This commit adds lowering of `aten.ne.float_int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-27 21:16:48 +05:30
Vivek Khandelwal 1f102cc400 [MLIR][TORCH] Add E2E support for aten.ge.float_int op
This commit adds lowering of `aten.ge.float_int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-27 21:16:48 +05:30
Vivek Khandelwal 564734b2d7 [MLIR][TORCH] Add E2E support for aten.ge.float op
This commit adds lowering of `aten.ge.float` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-27 21:16:48 +05:30
Vivek Khandelwal f5b6c4b601 [MLIR][TORCH] Add E2E support for aten.div.float op
This commit adds lowering of `aten.div.float` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-27 21:16:48 +05:30
Sean Silva 73cc2ac152 Ensure that imported function input type and block arg types are consistent.
I wasn't able to find exactly what frontend situation created it, but
`torch.jit.trace` will sometimes create functions where the
`jit::Block`'s param node has refined tensor types. So we need to adjust
the function's formal param types to those refined types.
2022-04-27 08:01:23 -07:00
Ashay Rane 9208bf0eb6
llvm: bump tag to e1318078 (#781)
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
2022-04-26 12:27:51 -07:00
Maksim Levental 693f79a2b6
Fix test fails due to upstream PyTorch change (#793)
* Add to eager tests to xfail while they are fixed.

Also XFAIL ConstantPad2dStaticModule_basic.

* Fix test fails due to upstream PyTorch change.
2022-04-25 12:34:32 -07:00
Prashant Kumar 5cdef0213d [LINALG] Bug fix i64 vs i32 type comparison.
Comparing index type instead of integer types solves the problem.
2022-04-22 08:09:58 +05:30
powderluv cc3a4a58ef
Add oneshot release snapshot for test/ondemand (#768)
* Add oneshot release snapshot for test/ondemand

Add some build scripts to test new release flow based on IREE.
Wont affect current builds, once this works well we can plumb it
in.

Build with manylinux docker

* Fixes a few issues found when debugging powderluv's setup.

* It is optional to link against Python3_LIBRARIES. Check that and don't do it if they don't exist for this config.
* Clean and auditwheel need to operate on sanitized package names. So "torch_mlir" vs "torch-mlir".
* Adds a pyproject.toml file that pins the build dependencies needed to detect both Torch and Python (the MLIR Python build was failing to detect because Numpy wasn't in the pip venv).
* Commented out auditwheel: These wheels are not PyPi compliant since they weak link to libtorch at runtime. However, they should be fine to deploy to users.
* Adds the --extra-index-url to the pip wheel command, allowing PyTorch to be found.
* Hack setup.py to remove the _mlir_libs dir before building. This keeps back-to-back versions from accumulating in the wheels for subsequent versions. IREE has a more principled way of doing this, but what I have here should work.

Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
2022-04-21 02:19:12 -07:00
Prashant Kumar 33c9d256ea [REFBACKEND] Add support for returning multiple different return types.
Added the dynamic registration of return function to the execution
engine. This makes sure that  different/multiple return types are supported.
Also, updated the .style.yapf indentation to 4.
2022-04-21 09:02:30 +05:30
Sean Silva 075464fa74 Add a new `torch_mlir.compile` method.
This makes it much easier to convert models and hides all the
ClassAnnotator complexity.

This also adds a new example `torchscript_resnet18_all_output_types.py`
which shows the ResNet18 IR for all output types.

Also,

- This moves `run_pipeline_with_repro_report` to
  `torch_mlir.compiler_utils`.
2022-04-20 10:06:01 -07:00
Sean Silva 3b5310d6d2 Move COMMON_TORCH_MLIR_LOWERING_XFAILS into test_suite
That way, downstreams don't have to duplicate this list.

Also, remove "external config" feature, since it is subsumed by just
importing the test suite.
2022-04-19 14:32:58 -07:00
Vivek Khandelwal 769f3a8870 [MLIR][TORCH] Add E2E support for max_pool2d_with_indices op
This commit adds lowering of `max_pool2d_with_indices` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-18 21:05:19 +05:30
Ashay Rane d3c08376af
test: add end-to-end test for aten.neg (#760) 2022-04-15 12:37:57 -07:00
Ashay Rane a893c7d5cf
Add shape transfer function and lowering to linalg for aten.neg (#759)
* shape: add shape transfer function for aten.neg

Prior to this patch, the list of shape transfer functions did not
include `aten.neg`, which resulted in errors like below.

```
error: unsupported by backend lowering: tensor with unknown rank or dtype
note: see current operation: %0 = "torch.aten.neg"(%arg0) :
  (!torch.vtensor<[256,256],f32>) -> !torch.vtensor<*,f32>
note: this is likely due to a missing shape transfer function in shape_lib_gen.py
```

This patch fixes the problem by adding a shape transfer function to
reflect the point-wise nature of this operation.

* linalg: add translation of aten.neg operation

This patch adds a translation rule to lower `aten.neg` operations on
tensors to an `arith.negf` operation wrapped inside a `linalg.generic`
operation.  This patch also adds a rudimentary test.
2022-04-15 11:11:22 -07:00
Vivek Khandelwal 1bccb4fc8a [MLIR][TORCH] Add E2E support for aten::max_pool2d_with_indices_backward op
This commit adds lowering of `aten::max_pool2d_with_indices_backward` op.

This commit also fixes formatting issues in basic.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-14 21:46:47 +05:30
Maksim Levental 24f9de7120
Fixes https://github.com/llvm/torch-mlir/issues/751 where `torch.bool` is parsed as signless `i1`. (#752) 2022-04-13 12:28:27 -05:00
Maksim Levental d46f169c1a
Fix kwarg annotation in eager (#747) 2022-04-11 17:35:42 -05:00
Maksim Levental 66de821eaf
small framework plus build_script_function (#745) 2022-04-11 16:53:52 -05:00
Maksim Levental 18ef40acaf
Fixes a bug in use of upstream `normalize_function` in our `normalize_args_kwargs` (in eager mode) and introduces unit tests. (#740)
NB: `shouldnt_normalize2` and `shouldnt_normalize3` currently XPASS i.e., args *will* successfully normalize despite being incorrect due to an [upstream bug](https://github.com/pytorch/pytorch/issues/75342).
2022-04-11 16:17:44 -05:00
gpetters94 9ec0683e92
Add 2D case for convolution (#693) 2022-04-08 00:47:57 -04:00
gpetters94 fa0b24a73c
Rename optional list types (#643) 2022-04-07 18:15:51 -04:00
Prashant Kumar 1d5b5a89e8 [LINALG] Add torch.layout information
torch.layout information has been added.
2022-04-07 20:47:49 +05:30
Prashant Kumar fb8cb0c5f3 [LINALG] Add the lowering of `aten.ne.Scalar` op
The lowering of `aten.ne.Scalar` op has been added to
the linalg backend.
2022-04-05 21:07:28 +05:30
Ramiro Leal-Cavazos 5620fe030e
Add 1D, weight, and reduction support to nll_loss_backward (#729)
This commit adds the following support to the op `nll_loss_backward`:
- `input` tensor can be rank-1
- `weight` parameter
- `reduction` parameter
- `target`, `grad_output`, `total_weight` can be rank-0
- Checks that input tensors are of the expected type
2022-04-04 10:57:49 -07:00
Sean Silva 14cf87633c
Add link to forum post describing `__torch_dispatch__` 2022-04-01 10:10:43 -07:00
Ramiro Leal-Cavazos 51d4d55f8a
Add support for multi-dim input to `index_put_impl` (#722)
This commit adds support for multi-dimensional tensors as input to the
`_index_put_impl_` op. The support was to some degree already there,
since `ScatterOp` already supports multi-dimensional tensors. This
commit also adds a bit more error checking to `index_put` and
refactors the code for creating `ScatterOp`s to mimic the way one
would make a `Linalg::GenericOp`.
2022-03-31 09:27:21 -07:00
Sean Silva c17c0a6ba2 Fix for 0-size dim inferred incorrectly.
The issue was in the canonicalizer for torch.aten.ge.int -- in cases
where the operands were swapped, it would miscompile. This issue is
fixed and folding support generalized to `torch.aten.size.int < 0` as
well.

Fixes #716
2022-03-30 16:36:15 -07:00
Gaurav Shukla 969785d1b6 [LINALG] Add E2E support for `aten.where.[Scalar|ScalarSelf|ScalarOther]` ops
This commit decomposes different variants of `aten.where.*` op into
`aten.where.Self` op. It covers `aten.where.Scalar`,
`aten.where.ScalarSelf` and `aten.where.ScalarOther` ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-30 20:36:48 +05:30
Vivek Khandelwal 2597c481f6 [MLIR][TORCH] Add E2E support for aten.new_empty op
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.

This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-30 13:21:01 +05:30
Sean Silva 140babd952 Add minimal support for Union types.
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287

Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
  along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
  that derefines to a UnionType (this also fixes #664).

There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
2022-03-29 17:45:48 -07:00
Maksim Levental 25ba51b2af
This commit decomposes aten._reshape_alias op into aten.view op. (#690) 2022-03-28 23:54:28 -05:00
Maksim Levental 3e999beaea
Small bug fixes in eager mode (#691) 2022-03-28 13:31:07 -05:00
Sean Silva 0378c75b35 Centralize all test serialization logic. 2022-03-28 10:17:13 -07:00
Sean Silva 6b637a9fd9 Move e2e test definitions into the `torch_mlir_e2e_test` package
This is the first step to making the e2e framework convenient to use
by downstream backends.
2022-03-25 13:56:41 -07:00
Gaurav Shukla 02b6d04eb4 [LINALG] Add E2E support for `aten.zero_` op
This commit adds decomposition of `aten.zero_` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-25 12:46:50 +05:30
Sean Silva 94df096c11
Add note to not edit upstream_shape_helpers.py 2022-03-24 09:32:19 -07:00
Qiang Fu f7c7bb800c
Add non-default dtype support for a few elementwise math ops. (#687)
* fix type inference
* fix Torch2Linalg conversion
* add test cases
2022-03-23 13:35:43 -07:00
max fe8ac57e6d This PR implements an eager mode backend for PyTorch through the torch-mlir framework. This is accomplished by overriding the `__torch_dispatch__` class method on wrapper subclass `TorchMLIRTensor(torch.Tensor)`.
Effectively, this mode works by compiling op by op as the NN is eagerly executed by PyTorch. Entailed in that compilation is building a representation of the op that can be `torch.jit.script`ed, importing using `ModuleBuilder`, and then executing (e.g., with `RefBackendLinalgOnTensorsBackend`). This mode includes a fallback to conventional PyTorch if anything in the torch-mlir compilation process fails (e.g., unsupported op).

Currently, all e2e tests pass execpt for two that involve an upstream PyTorch bug (https://github.com/pytorch/pytorch/issues/74400).

High priority next steps:

1. A compile cache in order to speed up reruns of the same NN.
2. Integration with IREE (though not in this repo).
3. Integration with `torch.distributed`.
2022-03-22 14:42:57 -07:00
Gaurav Shukla 7c3ba25238 [LINALG] Add decomposition of `aten.dropout` op
- This commit adds decomposition of `aten.dropout` op. It also covers the
  training mode of the same op.
- It also adds lowering of `aten.sub.float` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-22 13:14:49 +05:30
Sean Silva 729402c3f4 Reduce compilation time for TorchOps.cpp.inc
The `assemblyFormat` stuff (which generates unrolled, per-op C++ code)
was taking up a lot of compile time, and all the ops are essentially
printed with the same logic. So this PR makes them all call the same
helper function. This is done by using
`let hasCustomAssemblyFormat = 1` and then implementing `FooOp::parse`
and `FooOp::print`.

Additionally, the `Generated*Ops.td` files are all collapsed into just
`GeneratedTorchOps.td` (there is no reason to have the files separate,
since the files are very large anyway so one is always having to search
within them -- editors don't care that the file to search is now a bit
bigger :) ).

This reduces TorchOpsODSGenerated.cpp compile time (which is now
GeneratedTorchOps.cpp) from 39 to 31 seconds on my machine. This is
actually less than I expected, but this PR is an overall cleanup to the
code anyway. The next step will be to introduce (better) functionality
upstream for sharding the TorchOps.cpp.inc file, so that we can truly
parallelize the O(#ops) costs. This is also necessary, because after
this PR, TorchDialect.cpp is now the slowest file to compile, due to the
`addOperations<... all the ops ...>` call, which needs to be shareded
too.
2022-03-21 14:42:26 -07:00
Vivek Khandelwal 5b9bdfaf3f [MLIR][TORCH] Add E2E support for aten._to_copy op
This commit decomposes `aten._to_copy` op into
`valsem.aten.copy` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 19:12:37 +05:30
Vivek Khandelwal 13383b03b8 [MLIR][TORCH] Add value tensor variant to aten::copy_ op
This commit adds the op `ValsemVariantAtenCopyOp` that represents
`AtenCopy_Op` without the underscore. This is needed to make sure
that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenCopyOp`.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 19:12:37 +05:30
Vivek Khandelwal 4c0cd5c23d [MLIR][TORCH] Add E2E support for aten.expand_as op
This commit decomposes `aten.expand_as` op into `aten.broadcast_to` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 12:47:39 +05:30
Vigilans 63fb1e5aad Bump LLVM at 8361c5da30588d3d4a48eae648f53be1feb5cfad 2022-03-18 13:16:14 -04:00
Prateek Gupta 7256c9e395 [TORCH][MLIR] Fix the return types of `aten.native_layer_norm`.
This commit fixes the 2nd and 3rd return types of the `aten.native_layer_norm`.
Previously the mean and rSTD were returned with reduction dims removed.
This commit fixes this and keeps the reduction dims of the results.

Signed-Off-By: Prateek Gupta <prateek@nord-labs.com>
2022-03-17 12:08:32 +05:30
Vivek Khandelwal 8da7d90611 [MLIR][TORCH] Add E2E support for aten.index_put op
This commit decomposes `aten.index_put` op into
`valsem.aten.index_put_impl` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-16 22:02:02 +05:30
Vivek Khandelwal 3d95c3d6c9 [MLIR][TORCH] Add value tensor variant to aten::_index_put_impl_
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.

This commit also updates the `torch.bincount` op test cases.
2022-03-16 22:02:02 +05:30
Ramiro Leal-Cavazos 0bcc6d1075
Add maximize-value-semantics support for multiple non-value tensor inputs (#659)
This commit adds value semantics support for ops such as
`aten.view_as` and `aten.expand_as` that take two non-value 
tensors as input.
2022-03-15 18:13:45 -07:00
Sean Silva 92da4988f0 Improve "pseudo" op terminology.
The term "pseudo" is very vague and was getting confusing (I felt I had
to explain it in every comment referencing it). Instead, rework the
"pseudo" ops to instead be named:

- MLIR Syntax: `torch.valsem.*`
- C++ / ODS: `ValsemVariant*Op`

This makes it clear what the concept is, and avoids confusion with other
things that might be called "pseudo", since these are very specific and
should be 100% consistently named w.r.t. the non-valsem-variant ops that
they correspond to.
2022-03-15 17:57:52 -07:00
Sean Silva a5fe0cf063 Introduce new shape library design.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.

This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.

Recommended review order:

1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
   `canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.

Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).

Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
2022-03-15 12:41:58 -07:00
Prashant Kumar b6d13301fc [TORCH] Fix the location of packed_params.
The location of packed_params.h is changed in aten src.
2022-03-14 17:52:19 +05:30
Prateek Gupta 3d9ba5e525 [MLIR][TORCH] Add E2E support for aten.erf op.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2022-03-09 22:22:03 +05:30
Vivek Khandelwal 1a2a9e066f [MLIR][TORCH] Add TorchToTMTensor pass
This pass is added to lower ops, which can not be lowered
via the TorchToLinalg pass, such as `torch.bincount` op.
This pass also uses torch-mlir's TMTensor Dialect to lower the
complex ops.

Also add torch.bincount op lowering with the help of TMTensor dialect

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-08 22:52:34 +05:30
Gaurav Shukla e57d3f9774 [LINALG] Fix `aten.bernoulli` op lowering
- This commit adds E2E support for `aten.rand_like` and
  `aten.bernoulli_.Tensor` ops.
- The `aten.bernoulli(x)` was implemented as:
  `aten.bernoulli(x) = rand_like(x) < 0.5`, assuming 0.5 as default
  probability, whereas according to the pytorch documentation:
  https://pytorch.org/docs/stable/generated/torch.bernoulli.html#torch.bernoulli
  the input x in `aten.bernoulli(x)` is itself a tensor containing
  probabilities to be used for drawing the binary random number.
- So this commit fixes the `aten.bernoulli(x)` implementation as:
  `aten.bernoulli(x) = rand_like(x) < x`.
- It also fixes the case where the input to `aten.bernoulli_.float` is
  an integer tensor. In this case the input must be casted to float type
  before passing it as operand to `aten.rand_like` op.
  `aten.bernoulli_.float(x, p) = rand_like(float(x)) < p`.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-05 09:38:22 +05:30
Vivek Khandelwal af551bd9cd [MLIR][TORCH] Add E2E support for aten.full_like op
This commit decomposes `aten.full_like` op into `aten.empty_like`
and `aten.fill` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-04 21:58:23 +05:30
Vivek Khandelwal d61ae92eee [MLIR][TORCH] Add E2E support for aten.full op
This commit decomposes `aten.full` op into `aten.empty` and
`aten.fill` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-04 21:58:23 +05:30
Yi Zhang 486f95e84f Add bufferization pass for TMTensor ops
The pass is mostly borrowed from the BufferizeAnyLinalgOp pass in mlir
upstream with some minor changes. At a high level, it's a naive partial
bufferization pass which allocate new buffers for all the output
tensors. The initial value of an output buffer is copied from the
original buffer if there are uses of the original value.

One difference from linalg bufferization pass is the way to tell if
the loop body uses the init value of output operand. For TMTensor ops,
it differs from op to op because the payload region doesn't represent
the entire loop body.
2022-03-03 11:39:14 -05:00
Yi Zhang 1d285f0153 Add aten.hardtanh e2e support. 2022-03-02 12:28:06 -05:00
Prashant Kumar 819f29316f Decompose aten.silu op
Decomposition of aten.silu.op is added as silu(x) = x * sigmoid(x).
2022-03-01 23:24:19 +05:30
Vivek Khandelwal ddd45d6068 [MLIR][TORCH] Add E2E support for aten.new_zeros, aten.new_ones op
This commit adds lowering of `aten.new_zeros` and `aten.new_ones` op

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-01 22:09:47 +05:30
Prashant Kumar 7c637eebc3 [LINALG] Decompose aten_hardswish op.
`aten.hardswish` op is decomposed into (x/6) * Relu6(x+3).
2022-02-25 21:59:27 +05:30
Prashant Kumar abbde7d439 [TORCH] The torch definition related to aten.gelu has changed.
New str argument approximation is added.
2022-02-18 21:57:46 +05:30
Nirvedh f8cb32faf0 LLVM bump
Major changes: opTrait changed to Trait, selectOp moved to arith dialect
assertOp moved to cf dialect
2022-02-16 15:28:13 -05:00
Gaurav Shukla cd21dda867 [LINALG] Add E2E support for `aten.Hardsigmoid` op
This commit adds lowering of `aten.Hardsigmoid` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-16 02:35:18 +05:30
Ramiro Leal-Cavazos 00a6e9c1bb
[LINALG] Add value tensor variant to `fill_.Scalar` (#600)
This commit adds the op `PseudoAtenFillScalarOp` that represents
`AtenFill_ScalarOp` without the underscore. The approach is the same
as in commit dd998fa4d4.

Adding this op allows for a simpler and more consistent version of the
`empty` and `empty_like` op e2e tests.
2022-02-15 11:58:03 -08:00
Gaurav Shukla 41acde599b [LINALG] Add E2E support for `aten.[le|ge].Scalar` ops
- This commit adds lowering of `aten.le.Scalar` and `aten.ge.Scalar` ops
  as a part of `convert-torch-to-linalg` pass.
- It also creates a new test script `elementwise_comparison.py` for all
  element-wise comparison ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-15 12:21:09 +05:30
Gaurav Shukla f00d1686c8 [LINALG] Add E2E support for `aten.[Bool.Tensor|Float.Tensor]` op
- This commit adds lowering of `aten.Bool.Tensor` and
  `aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
  input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
  `aten.Float.Tensor` op, it folds to the scalar number.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-14 23:09:20 +05:30
Yi Zhang 9e7b6cab08 Add folder for aten.gt/lt.float 2022-02-14 12:34:01 -05:00
Henry Tu 73ac9a7e2e Added support for importing node prim::Constant with list type
Prior to this commit, importing a `prim::Constant` node with list type would result in an error since it was not supported. `ivalue_importer::importIValue` was modified to return the MlirValue corresponding to the root so its parent operation could be extracted.
2022-02-11 20:54:06 -05:00
Prashant Kumar 258660deb6 Add aten.bernoulli decomposition.
aten.bernoulli is decomposed to aten.gtTensor(aten.uniform(x), x).
2022-02-11 00:35:33 +05:30
Prashant Kumar 102c497c4c Add decomposition of _log_softmax op.
Decompose _log_softmax into log(softmax(x)).
2022-02-10 23:17:26 +05:30
Prateek Gupta 318946a650 [TORCH][MLIR] Add E2E support for `aten._unsafe_view` op.
This commit adds decomposition of `aten._unsafe_view` op into
`aten.view` op.

Signed-Off-By: Prateek Gupta<prateek@nod-labs.com>
2022-02-10 22:28:58 +05:30
Ramiro Leal-Cavazos 9b89f8eb3f
[TORCH][MLIR] Add E2E support for aten.clone (#571)
This commit adds support for the aten.clone op.
2022-02-09 19:31:03 -08:00
Yi Zhang e09e2cbe70 Include IR dump options on e2e failure report 2022-02-09 11:19:34 -05:00
Gaurav Shukla 2fefe68ffd [TORCH][MLIR] Add E2E support for `aten.native_batch_norm` op
- This commit adds support for `aten.native_batch_norm` operation.
- The current implementation only supports inference mode of
  `aten.native_batch_norm` op.

Signed-Off-By: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-08 02:54:03 +05:30
Prashant Kumar ccf546f14c Add aten::nll_loss_backward op
The lowering of aten::nll_loss_backward op has been added
from torch to linalg dialect. The changes has been made as
a part of -torch-convert-to-linalg pass.

Signed-off-by: Prashant Kumar prashant@nod-labs.com
2022-02-04 21:57:53 +05:30
Yi Zhang 0cb216a1ad [Torch][Linalg] Add basic support for RNG
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
2022-01-31 18:56:42 -05:00
Yi Zhang 5d9a15263a [TORCH] Add aten.std e2e support 2022-01-31 15:17:49 -05:00
Prashant Kumar e58b66bc3b Add lowering of `aten.max.dim` op.
Lowering of `aten.max.dim` op has been added.
2022-01-31 21:41:22 +05:30
Liam Fitzpatrick 8bc028af05 Fold __is__ and unchecked_cast of derefine
The added e2e maxpool testcase from #545 was not getting a static shape
due to an unfolded prim.If when RefineTypes was called. This was because
of unfolded torch.iaten.__is__ and torch.prim.unchecked_cast operators
with torch.derefine operands.
2022-01-28 17:54:40 -05:00
Yi Zhang e1b3e5bc92 Fix build failure 2022-01-28 13:21:36 -05:00
stephenneuendorffer 3fd9b7789e
Bump LLVM to 881ff4e4ebe8cc0cc045c7c167cffb01f94f27f8 (#539) 2022-01-25 22:16:30 -08:00
Yi Zhang ad4b9e0369 Minor fixes 2022-01-24 19:21:15 -05:00
Suraj Sudhir 5d6c4f48dc
[tosa] Enable tosa-to-linalg-named so Matmul works again (#530)
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2022-01-19 12:10:04 -08:00
dan 3745f54489 Update external/llvm-project
- Add `qualified` to ods because of
https://reviews.llvm.org/D113873 and https://reviews.llvm.org/D116905
- Needed to revert https://github.com/llvm/torch-mlir/pull/520 as it
was based on an old torch version.
https://github.com/llvm/torch-mlir/pull/527 will bring this back with
a better design.
- Change ConvertAtenCatOp to use more accurate tensor shape info and
as much static info as possible to pass `tensor.insert_slice`
verification code added by https://reviews.llvm.org/D114715
- Other minor fixes
2022-01-18 13:25:42 -05:00
Yi Zhang 40efd2cb8e Revert "Add non-RNG aten ops to aten dialect."
This reverts commit c9a343267c.
2022-01-18 13:25:42 -05:00
Suraj Sudhir 5ded7d096f
[tosa] Add tosa-to-standard before tosa-to-linalg pass (#524)
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2022-01-14 11:05:11 -08:00
Prateek Gupta c9a343267c Add non-RNG aten ops to aten dialect.
This commit adds the aten ops which do not require random number
support to aten dialect. This commit also adds some of the missing
torch types.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2022-01-14 14:20:33 +05:30
Liam Fitzpatrick 077e55d756 Add support for constant_pad_nd
Note that to enable folding of the code coming from an example
like the ConstantPad2dStaticModule e2e test, support for other
operations had to be added/improved:
- aten::neg.int
- aten::eq.float
- aten::eq.str
- prim::Uninitialized
2022-01-11 10:25:25 -05:00
Vivek Khandelwal 35cf8d18f7 Add support for two return values
This commit adds support for two return values of type
memref f32 and i64.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-01-11 11:07:10 +05:30
Vivek Khandelwal ca662dc9cc [MLIR][TORCH] Add E2E support for aten.threshold, aten.threshold_backward op
This commit adds lowering of `aten.threshold` op
This commit adds lowering of `aten.threshold_backward` op

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-01-10 11:56:56 +05:30
Gaurav Shukla 3c40539b34 [TORCH][MLIR] Add E2E support for `aten.[ones_like|zeros_like]`
- This commit adds E2E support for `aten.ones_like` and
  `aten.zeros_like` ops.
- Adds support for non-None `dtype` argument of `aten.empty_like` op.
- All the unit test cases related to constant tensor allocation like ops
  are moved to a different file named `constant_alloc.py`.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-01-06 20:24:40 +05:30
Ramiro Leal-Cavazos 9afaacedbd Fix build error regarding missing types in torch::jit
This commit adds include statements of the file
`torch/csrc/jit/ir/ir.h` for files that use types from torch::jit.

Fixes https://github.com/llvm/torch-mlir/issues/506
2022-01-03 13:36:22 -06:00
Vivek Khandelwal 4486de5ef3 [MLIR][TORCH] Add E2E support for torch.arange op
This commit adds lowering of `aten.arange.start_step` op.
This commit decomposes `aten.arange` and `aten.arange.start` into
`aten.arange.start_step` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2021-12-27 22:45:48 +05:30
Gaurav Shukla a83004c806 [TORCH][MLIR] Fold trivial cases of `aten.to.dtype` and `aten.view` op
- It folds `aten.to.dtype` when the input tensor type and result type
  are exactly same.
- It folds `aten.view` when the rank of both the input tensor type and
  result type is unity.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-24 13:32:34 +05:30
Nirvedh 3cb46cecef Added aten::t() Op 2021-12-22 10:57:10 -05:00
Gaurav Shukla eddc09aa55 [TORCH][MLIR] Add E2E support for `aten.eq` and `aten.lt` ops
- Added E2E support for `aten.eq.Tensor` and `aten.lt.Tensor` ops. Both
  the operands are expected to be of the same type, i.e., type promotion
  is not addressed as a part of this commit.
- Added E2E support for `aten.eq.Scalar` and `aten.lt.Scalar` ops.
  Tensor operand type to Scalar operand type promotion has not been
  handled in this commit.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-16 18:47:22 +05:30
Ramiro Leal-Cavazos 707c113463 Fix naming of results in ODS generator
This commit fixes the naming of results in the torch ODS generator
when dealing with multiple results. In particular, this commit appends
an index to each result name to guarantee that they are all unique.
2021-12-15 13:53:15 -06:00
Gaurav Shukla a778f990e9 [TORCH][MLIR] Add E2E support for `aten.ceil` op
This commit adds lowering of `aten.ceil` op as a part of element-wise
ops lowering.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-12 01:15:47 +05:30
harsh 03b6edce68 Add where, gt, bucketize and reshape ops to Torch dialect
This patch adds the where, gt, bucketize and reshape
ops to the Torch dialect. These ops are present in the histogram
calibration module.

TEST: Successfully lowers ops to Torch dialect in histogram module.
2021-12-10 10:08:20 -08:00
Prateek Gupta cfc8de36f8
[MLIR][TORCH] Add E2E support for `aten.native_layer_norm`. (#470)
This commit adds support for aten.native_layer_norm operation. Here
the previous code for aten.layer_norm is tweaked a little bit to
accomodate both mean and variance values alongwith the layer norm
value. This commit also adds decomposition of aten.layer_norm into
aten.native_layer_norm, which was previously getting lowered directly
to linalg.

Signed-Off-By: Prateek Gupta<prateek@nod-labs.com>
2021-12-10 19:06:19 +05:30
Gaurav Shukla 5a47f92390 [TORCH][MLIR] Add E2E support for `aten.squeeze.dim` op
This commit adds lowering of `aten.squeeze.dim` op into
`linalg.TensorCollapseShape` op. Here, the dim(th) dimension of the
input tensor is not supposed to be dynamic.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-10 17:01:20 +05:30
Gaurav Shukla f34eb66124 [TORCH][MLIR] Add E2E support for [`aten.gt.Scalar`|`aten.where.self`]
This commit adds lowering of `aten.gt.Scalar` and `aten.where.self` as a
part of element-wise ops lowering.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-09 12:47:10 +05:30
Prashant Kumar c598e01529 Add support for passing & returning memref of bool types
Support for passing memref of bool types as a function argument
and return is added in ref-backend.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-12-09 00:23:38 +05:30
Prashant Kumar 977b1b03ea Add aten::nll_loss_forward op lowering.
The op lowering has been added as a part of `torch-lower-to-linalg`
pass. This takes care of ignore_index but the weight and reduction
operand is still to be accounted for.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-12-07 17:11:08 +05:30
Vivek Khandelwal 46a2189a41 [MLIR][TORCH] Add E2E support for aten.bitwise_and.tensor op
This commit adds lowering of `aten.bitwise_and.tensor` op.

Signed-Off By: Vivek Khandelwal vivek@nod-labs.com
2021-12-02 21:06:15 +05:30
Vivek Khandelwal 46a0668b3b [MLIR][TORCH] Add E2E support for aten.mean and aten.numel op.
This commit adds lowering of `aten.mean` and `aten.numel` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2021-12-02 11:51:13 +05:30
Gaurav Shukla 73b27b32dc [MLIR][TORCH] Add E2E support for `aten.squeeze` op
This commit adds lowering of `aten.Squeeze` op into
`linalg.TensorCollapseShape` op. The size 1 dynamic dimensions are not
handled as a part of this commit.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-11-30 23:00:28 +05:30
ds1231h 9ad5954e41 aten.abs and aten.reciprocal to linalg 2021-11-30 11:31:55 -05:00
Yi Zhang 5d28549c2c Add folder for torch.aten.Int.Tensor
This is to fold the common pattern from Bert inference like:
```
%111 = torch.prim.NumToTensor.Scalar %110 : !torch.int ->
    !torch.vtensor<[],si64>
%112 = torch.aten.Int.Tensor %111 : !torch.vtensor<[],si64> ->
    !torch.int
```
2021-11-30 21:55:48 +05:30
Daniel Garvey 539511c19b
Add dropout op (#436)
Co-authored-by: dan <dan@nod-labs.com>
2021-11-29 12:30:03 -06:00
Liam Fitzpatrick 7616d28ce1 Add leakyrelu support 2021-11-27 23:04:46 +05:30
Prateek Gupta f461a7ebce
[TORCH][MLIR] Add E2E support for aten._softmax operation. (#431)
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2021-11-25 11:19:02 +05:30
nodlabs 67ce816fca lowered addcmul and addcdiv to linalg 2021-11-24 17:26:47 -05:00
Prashant Kumar ea7a30f9b9 Add e2e test for aten.log_softmax_back_data op
aten.log_softmax_back_data op lowering and required
tests has been added. Some NFC have also been added.

Signed-off-by: Prashant Kumar prashant@nod-labs.com
2021-11-19 00:08:28 +05:30
Gaurav Shukla 663fc1ef51 [MLIR][TORCH] Add E2E support for [`aten.mul.Scalar`|`aten.addmm`]
This commit adds lowering of `aten.mul.Scalar` and also adds
decomposition of `aten.addmm` to `aten.mul.Scalar`, `aten.add.Tensor`
and `aten.mm` ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-11-18 22:26:41 +05:30
Prateek Gupta ecf78b9849
[TORCH][MLIR] Add E2E support for `aten.gelu_backward` operation. (#418)
This commit adds new operation `aten.gelu_backward` in the aten
dialect and adds lowering of this operation from aten to linalg.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2021-11-17 14:59:38 +05:30
Yi Zhang 0fe70994e5 Add support for multiple return values
This change is to unblock the work of some backprop ops returning more
than one tensors. We will need to think of a more scalable approach
in the future if more flexible return types combinations are needed.
2021-11-16 21:07:45 -05:00
Yi Zhang 53733933a4 Update llvm upstream to 0b17336f793108a7b10c3fa913039144ef1d0f61
Update AsmPrinter/Parser and MatchAndRewrite
2021-11-16 13:04:51 -05:00
Prashant Kumar 909f7d7171 Add e2e testing for aten_tanh_backward op.
The e2e testing for aten_tanh_backward op has been added.
The testing is done for ref_backend.
2021-11-09 11:28:49 -05:00
George Petterson 2764e86f02 Add Rsqrt 2021-11-09 11:08:28 -05:00
Yi Zhang 3bd9d2a4c7 Add e2e support for aten._softmax_backward_data.
Decompose aten._softmax_backward_data into aten math ops. Also decompose
`aten.size` to facilitate decomposing _softmax_backward_data.
2021-11-09 13:09:30 +05:30
Yi Zhang 05c4dd8e39 Add convertScalarToDtype helper.
This is to facilitate scalar type conversion in the TorchToLinalg. As
part of adding the helper, this PR also:
- Updated `AtenAddTensorOp`, `AtenSubTensorOp` to use the helpers to
support more type variants.
- Added e2e type promotion testing.
- Added i32 memref return/arg type to support e2e testing.
2021-11-08 17:50:52 -05:00
George Petterson e23cabf3a9 Add log2 2021-11-08 16:19:59 -05:00
Wang Kangyu 4bb9b44775 Add lowering of "aten.pow.Tensor_Scalar" op
Add e2e support for torch.pow(Tensor, Float)
2021-11-08 09:19:50 -08:00
Prashant Kumar fd505db2c6 Adding support for returning elemental types.
Support for returning elemental types. Previously, only
memref types as returning types was supported. All the hacky ways
to write tests which return elemental types should be taken care of.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-11-08 22:20:48 +05:30
Wang Kangyu b33543af85 Add lowering of aten.floor op 2021-11-06 17:31:44 -04:00
nodlabs 5ff823ace9 lowerd Sqrt to linalg
reused clang-format, as changes got deleted
2021-11-06 11:29:46 -04:00
Prashant Kumar ef897dbb19 Add lowering of `aten.log_softmax` op.
The `aten.log_softmax` is decomposed into `aten.softmax` and
`aten.log` op.
2021-11-03 22:10:05 +05:30
Prashant Kumar 127c7d8e27 Add lowering of `torch.log` op
The lowering of `torch.log` op has been added.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-11-02 21:18:00 +05:30
George Petterson 6dde5b347e Add rsub 2021-11-02 09:56:48 -04:00
Prashant Kumar 53b4275ef5 Add lowering of `aten.Int.Tensor` op.
The lowering of `aten.Int.Tensor` op has been added.
The changes has been made as a part of `convert-torch-to-linalg` pass.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-11-01 21:58:08 +05:30
Sean Silva c46d48f9f5 Make error reporting a bit better.
- Split out TOSA in the CI.
- Add summary of unexpected test outcomes. This works better when there
  are many XFAIL'ing tests, as it only prints out the error_str on
  FAIL, not on XFAIL. Example here:
  https://gist.github.com/silvasean/c7886ec7b3d35c21563cb09f7c3407da
2021-10-28 13:20:16 -07:00
Sean Silva b02b65cf6e Fix for upstream Torch change.
After https://github.com/pytorch/pytorch/pull/65967 the `graph()` method
is only available on `torch::jit::GraphFunction` now.

Fixes https://github.com/llvm/torch-mlir/issues/388
2021-10-28 11:12:05 -07:00
Prateek Gupta c33a2ca952 [TORCH][MLIR] Add E2E support for aten.permute.
This commit adds lowering of aten.permute to linalg.generic operation.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2021-10-28 10:25:26 -04:00
stephenneuendorffer 614b889dc6
Enable python extensions when building out of tree (#363) 2021-10-27 17:04:12 -07:00
Sean Silva 30df2ec71b Add min/max/clamp support.
Part of #380

Also
- BoolType is not considered as Scalar
- e2e framework fixes for nan handling
- `tu.rand(..., low=, high=)` support
- delete unused variable (fix warning)
- Add IouOfModule from #380 to e2e test suite (this is a common
  calculation in vision models)

 Your branch is ahead of 'origin/main' by 1 commit.
2021-10-27 13:29:21 -07:00
Prashant Kumar 5009cbf55c Add lowering of aten.matmul op.
Lowering of `aten.matmul` op is added from torch to linalg dialect.
The different cases correspond to
https://pytorch.org/docs/stable/generated/torch.matmul.html.
TODO: Broadcasting in case of batch-matmul is yet to be taken care of.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-10-26 12:45:09 -04:00
Boian Petkantchin e276dbbaa6
Add aten::gelu lowering (#374)
* Print more exception info on error during test execution

* Fix formatting

* Add aten::gelu lowering

Co-authored-by: Boian Petkantchin <boian@nod-labs.com>
2021-10-25 16:16:01 -07:00
Sean Silva a6943ef90c Rename `tosa-to-linalg-on-tensors` to `tosa-to-linalg`
The pass name changed upstream.
2021-10-25 20:43:54 +00:00
Stella Laurenzo a23d77100b Set some wheel building optimization options.
* Also adds a requirements.txt and updates docs to reference it versus stringy pip install.
* Adds doc with instructions on creating a wheel.

Fixes #370
2021-10-25 18:30:53 +00:00
Stella Laurenzo fe69bb339c
Bump llvm-project to 3d92722f74993969243d1400bc3257ca3d03902f. (#369)
* Picks up Python configure changes (was pinned to a bad intermediate commit).
* Uses the new mlir_configure_python_dev_packages() to ensure CMake python is found consistently.
* Fixes the JIT importer to build as a MODULE vs SHARED (needed for linking to Python as a module, per config changes).
* Adds some notes to the README to help folks build a smaller set focused just on this project.
2021-10-21 21:09:00 -07:00
Yi Zhang abfaf8c577 Add aten.ne.bool to make CI pass 2021-10-21 14:45:41 -04:00
George Petterson 8853dfbc74 Add broadcast 2021-10-19 13:33:31 -04:00
Yi Zhang a459e09ab7 E2e support for aten.softmax.int and aten.embedding
- Added a DecomposeComplexOps pass to decompose complex torchOps.
- Refactored `visitAtenArgmaxOp` and `visitAtenAnyDimOp` to
`visitReductionAlongDimIntOp`.
- Moved some helper functions into
torch-mlir/Dialect/Torch/Utils/Utils.h to be shared by multiple files.
- Added support for f64 tensor as argument and return types.
2021-10-18 17:57:45 -04:00
dan 7750d2173a add argmax lowering
Add argmax lowering from torch to linalg
2021-10-13 14:31:16 -04:00
Sean Silva 19e9fc4ef1 Bring some more order to the e2e error reporting situation.
- Move `run_pipeline_with_repro_report` to a more common place, and use it
  consistently
- Attach a `torch.debug_module_name` to the enclosing `builtin.module`
  op to allow for self-contained error reporting (not needing to pass
  the names around.
- Remove redundant error reporting in linalg_on_tensors_backend.py and
  tosa_backend.py (their respective backend abstract base classes now
  take care of the error reports themselves)
- Save off original value of sys.stderr, rather than always resetting to
  `sys.__stderr__`. This is just more hygienic, and allows nesting if
  desired.
2021-10-08 13:00:12 -07:00
Sean Silva 0c5c84d63d Add a basic TOSA E2E backend.
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```

The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.

Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
  the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
  `abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
2021-10-08 09:59:45 -07:00
dan 2e1498ad11 add i64 support to refbackend 2021-10-05 15:12:44 -04:00
Yi Zhang 98ba255288 E2e support for layernorm. 2021-10-04 14:15:13 -04:00
Sean Silva f0ed9e2d8d Fix update_torch_ods.sh 2021-10-01 17:47:25 +00:00
Sean Silva 5b6902e31c Dual license the torch-mlir project.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.

The standard file comment is now:

```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```

See `LICENSE` in the project root for the terms of both licenses.
2021-10-01 10:46:08 -07:00
Sean Silva 5917f1dc47 Remove last mentions of IREE. 2021-10-01 17:28:07 +00:00
Yi Zhang 89225b0cd8 Add BertSequenceClassification model to e2e
Use torch tracing to get the module because the original model is not
TorchScriptable out of box.
2021-09-30 13:30:29 -04:00
Ramiro Leal-Cavazos b59f2cb673
Implement the lazytensor package (#331)
Implement the `lazytensor` python package for converting
lazy computations captured by the Lazy Tensor Core into MLIR.
This PR also fixes a few things with `torchfx` and its example
2021-09-28 17:25:06 -07:00
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva d8f603a4e5 Remove old stuff in prep for move-to-root. 2021-09-27 17:11:08 -07:00
Sean Silva 404bd74ddf Port the bulk of the remaining code to torch-mlir
This leaves no real code outside torch-mlir.

This also renames the "npcomp backend contract" to "linalg on tensors
backend contract" as the name of the abstraction layer that RefBackend
(IREE too) accepts.
2021-09-27 12:48:33 -07:00
Yi Zhang cd7053dfde Add runtime check 2021-09-24 12:01:36 -04:00
Yi Zhang c9cc4cb2e9 Add i64 tensor argument support and bring back GatherModule_basic 2021-09-24 12:01:36 -04:00
Sean Silva 01c6c54dd8 Fix dependency. 2021-09-23 21:39:31 -07:00
Sean Silva 2213584c4f VerifyBackendContract -> VerifyLinalgOnTensorsBackendContract
This moves it into TorchConversion since it is only needed there.

This removes the Backend/ directory.
2021-09-23 21:39:31 -07:00
Sean Silva 1a0b953ea7 Eliminate almost all mentions of IREE.
A few remain in examples/docs that will be naturally be updated in due
time.

This regresses the list support and the general direction of more widely
supported control flow, lists/dicts/globals that we were going for with
the TorchScript path. The idea is that we are deferring that work to
make torch-mlir a very clean standalone thing. We will reboot it,
probably using some of the tools of iree_pydm to make it simpler, and in
a more natural place (such as an iree-torch repo that depends on IREE and
torch-mlir to build a working PyTorch frontend solution for IREE -- it
was really weird that npcomp depended on IREE).
2021-09-22 16:06:38 -07:00
Sean Silva 8779d920b2 Remove "refjit" terminology.
We now use RefBackend/refbackend consistently.
2021-09-22 15:41:23 -07:00
Sean Silva a25163fbfa Remove old RefBackend
It is superceded by the new one.
2021-09-22 15:33:28 -07:00
Sean Silva f9c48d0b89 Bring up new RefBackend.
`tools/torchscript_e2e_test.sh` is all green.

This needs a few passes I put into torch-mlir/lib/RefBackend (not to be
confused with `npcomp/lib/RefBackend`, which will soon be deleted).

For the sake of review, since this brings together a lot of things, I
split this into its own commit. I temporarily commented out some "list"
stuff that we are going to remove as part of the torch-mlir refocus.
2021-09-22 14:20:22 -07:00
Sean Silva 6d8e7f1bb1 Implement Python relayout from #311
Fixes https://github.com/llvm/mlir-npcomp/issues/311

The key change is that TorchPlugin is folded into
`torch_mlir.dialects.torch.importer.jit_ir` (it imports the PyTorch
JIT's IR, so that's a good, scoped name for it).
The CMake option `-DTORCH_MLIR_ENABLE_JIT_IR_IMPORTER=OFF` disables it,
which allows building without a PyTorch native dependency.
2021-09-21 09:29:40 -07:00
Sean Silva 5f3b1ce0b8 Fold torch_mlir_dialects python package into `torch_mlir`.
After this change, there are now just two subdirectories in the
`python_packages` directory in our combined build:
- `npcomp_core` with all the npcomp stuff
- `torch_mlir` with all the `torch-mlir` stuff.

The combined `torch_mlir` build will be packaged for use by `pip`.
There isn't anything super useful for wider use in `npcomp_core` so for
now we aren't going to package that one.
2021-09-17 09:27:49 -07:00
Sean Silva 0eb767ea45 Remove frontends/pytorch directory.
It just contained the e2e testing framework. We now fold it into the
main project to reduce complexity.

- `frontends/pytorch/python/` -> `python/torch_support`
- `frontends/pytorch/e2e_testing -> e2e_testing`
- `frontends/pytorch/examples -> examples`
- `frontends/pytorch/test` -> `python/test`
- `torch_mlir_torchscript` python module -> `npcomp_torchscript`
- `torch_mlir_torchscript_e2e_test_configs` python module ->
  `npcomp_torchscript_e2e_test_configs`

This also changes the license of a handful of files from the
"pytorch-style" license to the regular LLVM/npcomp license. The only
people who committed to those files were myself and Yi.
2021-09-17 09:27:49 -07:00
Sean Silva d94d6800fa Bring CI back to life.
This brings back `check-npcomp-all` and the refbackend e2e tests
coverage.
2021-09-16 12:07:32 -07:00
Sean Silva b6be96d722 [torch-mlir earthmoving (2/N)] Python code movement.
This moves the bulk of the Python code (including the Torch interop)
from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also
required reconciling a bunch of other Python-related stuff, like the
`torch` dialects.

As I did this, it was simpler to just remove all the old numpy/basicpy
stuff because we were going to delete it anyway and it was faster than
debugging an intermediate state that would only last O(days) anyway.

torch-mlir has two top-level python packages (built into the
`python_packages` directory):

- `torch_mlir_dialects`: `torch` dialect Python bindings (does not
  depend on PyTorch). This also involves building the aggregate CAPI for
  `torch-mlir`.
- `torch_mlir`: bindings to the part of the code that links against
  PyTorch (or C++ code that transitively does).

Additionally, there remain two more Python packages in npcomp (but
outside `torch-mlir`):

- `npcomp_torch`: Contains the e2e test framework and testing configs
  that plug into RefBackend and IREE.
- `npcomp_core`: Contains the low-level interfaces to RefBackend and
  IREE that `npcomp_torch` uses, along with its own
  `MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR
  python bindings. (all other functionality has been stripped out)

After all the basicpy/numpy deletions, the `npcomp` C++ code is now very
tiny. It basically just contains RefBackend and the `TorchConversion`
dialect/passes (e.g. `TorchToLinalg.cpp`).

Correspondingly, there are now 4 main testing targets paralleling the
Python layering (which is reflective of the deeper underlying dependency
structure)

- `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code.
- `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g.
  TorchScript import)
- `check-frontends-pytorch`: Checks the little code we have in
  `frontends/pytorch` -- mainly things related to the e2e framework
  itself.
- `check-npcomp`: Checks the pure MLIR C++ code inside npcomp.

There is a target `check-npcomp-all` that runs all of them.
The `torch-mlir/build_standalone.sh` script does a standalone build of
`torch-mlir`.

The e2e tests (`tools/torchscript_e2e_test.sh`) are working too.

The update_torch_ods script now lives in
`torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone
build.

This change also required a fix upstream related to cross-shlib Python
dependencies, so we also update llvm-project to
8dca953dd39c0cd8c80decbeb38753f58a4de580 to get
https://reviews.llvm.org/D109776 (no other fixes were needed for the
integrate, thankfully).

This completes most of the large source code changes. Next will be
bringing the CI/packaging/examples back to life.
2021-09-15 13:40:30 -07:00
Sean Silva 28a7738189 [torch-mlir earthmoving (1/N)] C/C++ code movement.
This creates the `external/torch-mlir` directory as an
LLVM_EXTERNAL_PROJECTS-compatible project (analogous to
`iree-dialects`) and completes movement/rename of all pure MLIR C/C++
compiler code into there. The next step will be to move all the Python
code / code that links/includes PyTorch C++ code (which currently lives
in `frontends/pytorch`) into a subdirectory here.

I call this "earthmoving" because it is mostly mechanical changes and
renames. As a quick summary (we can change this down the road easily)
- C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch`
- CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet`
- preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_`
- CMake `NPCOMPFoo -> TorchMLIRFoo`

The goal of this is to create a standalone project creating a center of
mass for entry into the MLIR ecosystem from PyTorch, suitable in scope
for eventual inclusion/ownership in PyTorch. The idea is that
`external/torch-mlir` will some day be pulled out into its own
repository, and then npcomp will simply pull it in as a submodule.

Layering-wise, what lives in `torch-mlir` lowers code from PyTorch
(currently TorchScript, but TorchFX or pytorch/xla-style tracing are
possible extensions) down to what we have been calling the "Torch
backend contract" which is cleaned up IR (inlining, simplifcation,
conversion to value tensors, ...) entirely in the `torch` dialect. This
is the branching off point for further lowering, of which npcomp takes
one opinion (outside `torch-mlir` of course!), namely the
`TorchConversion` dialect/transforms which lower to IR suitable for IREE
and other linalg-on-tensors based lower-level compilers.

Summary of changes:
- move `{include,lib,test}/Dialect/Torch` into `torch-mlir`
- move relevant parts of CAPI into `torch-mlir`.
- leave a few things related to the `torch-mlir` Python build commented
  out, which should be resolved in a subsequent change.
2021-09-10 21:44:37 -07:00
Sean Silva a7252f9a06 Add basic support for lists.
This plumbs through a vertical slice of support for lists.

The main chunk of new code here is AnnotateABIPass which captures the
program signature at the Torch backend contract layer, right before we
start `TorchConversion`. The `TorchConversion` lowering process is lossy
w.r.t. types, so it's necessary to do this for all targets in general.
Like using `!iree.list` directly, we use IREE's ABI annotation
representation for this, although there is nothing very IREE-specific
about it (see
https://github.com/google/iree/blob/main/docs/developers/design_docs/function_abi.md)

We change `ListLiteralModule_basic` to use `!torch.int` because IREE
doesn't support f64 yet (and we don't yet have a way for users to say
that they want `!torch.float` to lower as f32).

Recommended review order:
- AnnotateABIPass and tests
- Arg marshaling in npcomp_backend.py and `iree.py`
- Updates to `list_programs.py` / `xfail_sets.py`
- Moving DeleteDeadIREEListsPass to Backend/Common, so that backends
  that don't support lists can use it. RefBackend uses that pass, for
  example.
2021-09-09 20:48:55 -07:00
dan d7320f3bda fixed some python imports
Change required to enable
./tools/torchscript_e2e_test.sh --config=iree
2021-08-27 14:58:45 -04:00
Stella Laurenzo 4148f88576 Merge npcomp and mlir python namespaces.
* Now the parts of the MLIR API are directly exported under the npcomp module (i.e. `npcomp.ir`, etc).
* Has required fixes for https://reviews.llvm.org/D108489
* Deletes npcomp.tracing vs fixing it because it was a very early experiment that will not be carried forward.
* This makes the npcomp python distribution completely standalone and separate from an mlir installation.
* Makes most of npcomp itself relocatable for future use as a library.
* Most things are a namespace package now. In the future we can s/torch_mlir/npcomp.frontends.torch/ and have it layer properly.
2021-08-22 21:00:42 -07:00
Sean Silva 902c2e579b Add resnet inference jupyter notebook.
This takes the example from torchscript_resnet18_e2e.py and puts it into
a slightly cleaned up notebook form.

It's still a little rough around the edges. Areas for improvement:
- Installation / setup.
- API usability.

Also,
- Add `npcomp-backend-to-iree-frontend-pipeline` since we will be adding
  more stuff there.
- Slight cleanups.
2021-08-09 14:34:43 -07:00
Sean Silva f168cacd6d Remove TCF and TCP.
These were legacy concepts that are now superceded by direct Torch to
linalg-on-tensors lowering. These were based on some very early thinking
related to the layering of frontends vs codegen, which is now obsolete
because:
- We expected a lot more centralization at the frontend (TCF) level. It
  turns out that frontend needs really vary a lot, and there is no grand
  unifying TCF dialect plausible. The additional layer isn't worth it.
- Linalg-on-tensors obsoletes the primary need for TCP. There are still
  a few things not representable with linalg-on-tensors, but the support
  is growing and the whole "not included in linalg-on-tensors" direction
  needs to be rethought. Our TCP dialect didn't cover any of the
  actually important things in this space (such as sort, FFT, top-k,
  etc.).

See historical [slides](https://drive.google.com/file/d/1iljcpTQ5NPaMfGpoPDFml1XkYxjK_6A4/view) / [recording](https://drive.google.com/file/d/1jSPa8TwPKUt0WuLquGc8OgSUVYJHMvWZ/view)
for more details on the origin story here.

Their presence was confusing users too
[bug](https://github.com/llvm/mlir-npcomp/issues/248).

Also,
- Trim down npcomp-run-mlir testing. It was testing TCF to TCP
  lowering for the most part. The essential stuff is retained and
  rephrased with linalg-on-tensors. (we should probably rename it
  "refback-run" or something, as it is just a way to invoke RefBackend)
- test/Python/Backend/RefJIT/simple_invoke_numpy.py is XFAIL'ed. Our
  "anti-framework" direction seems to be the likely future path.
2021-08-02 12:08:39 -07:00
Stella Laurenzo 445472c51e Build packages for npcomp-torch.
* Adds a minimal setup.py for frontends/pytorch
* Makes npcomp-core export its headers and libraries
* Adds a script to build packages.
* Adds CI step to package and smoke test.
* Will need some more tweaks and coordination prior to deploying (version locking etc).
2021-07-29 19:58:59 -07:00
Stella Laurenzo cd44a35177
Bump llvm-project to 5b2e7f50a6798fd9b9c79d9d62fdebcd9e78525b. (#260) 2021-07-29 12:26:54 -07:00
Stella Laurenzo ec611c1e6f
Misc fixes for MacOS. (#255)
* Change aligned_alloc -> malloc. It can fail (and does on MacOS) and is a bit over-aggressive optimization for a reference backend.
* Fixed a fragile test that prints -0.0 on MacOS.
* Fail the test (not the framework) on failure to trace (Torch on MacOS is missing features).
* Fix .so -> .dylib for compiler runtime.
2021-07-27 17:48:47 -07:00
Stella Laurenzo 2dbab50444
Rework the python build to a static assembly of MLIR+NPCOMP (#251)
* Adapt to python build system updates.

* Bump llvm to 310c9496d80961188e8d8f8ad306cdf44bd7541f (includes python build updates)
* Adds refback C-API.
* Re-layers all python builds.
* Rework CI.
2021-07-27 16:10:10 -07:00
Sean Silva d5108b9dc1 Add IREE support in TorchScript e2e tests.
- Add support for "expected failures" in test reporting. The new error
  reports look like
  [this](https://gist.github.com/silvasean/6ffd95e1d55302b699673da201da210d).
  - We will now be able to put these tests into CI, since the harness
    understand which tests are expected to pass and fail.
- Refactor RefBackendTestConfig to NpcompBackendTestConfig which
  supports both RefBackend and IREE.
- Add instructions for installing IREE dependencies (both from packages
  and for local builds of IREE)
- Add `tools/torchscript_e2e_test.sh` for invoking the e2e test
  harness (this makes invoking a bit easier, as it doesn't rely on a
  loose Python invocation).
2021-06-30 16:19:25 -07:00
Sean Silva 6b2424512b Make C API files more consistent
- Make consistent with MLIR Core
  - Use `//` or `///` comments.
  - Use `bool` type for booleans
  - No duplicated comments in .cpp files
- Split types into separate files `{Basicpy,Numpy,Torch}Types.h`
- Add dialect prefix consistently to C API symbols. We have lots of
  similarly named types (e.g. "list" type in basicpy and torch).
2021-06-14 15:34:43 -07:00
Sean Silva 2efda323ff Significantly restructure torch/aten import design.
This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.

This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).

Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
  imported as `torch.somens.someunqualname.someoverloadname` (skip the
  last dotted part if the overload name is empty), OR, if we don't have
  such an op registered, it is imported as
  `torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
  - The addition of the "overload name" is a critical element here, as
    the `(ns,unqual,overload)` triple is unique, which solves a lot of
    problems we were having.
  - This involves having separate MLIR ops for the `trailing_` and
    `.out` variants and all the different overloads. This seemed
    necessary, because the set of overloads is so wild and varied and
    unstructured. The previous design was leaning into some underlying
    structure that just isn't there -- the default situation is
    the "random overload that we want to manage on the MLIR side",
    rather than that being an exception. E.g.  `aten::ne` (not-equal)
    has 21 overloads, only 4 of which are c10 dispatcher ops see
    [gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
    and the "out" variant is really called `.Tensor_out` instead of
    `.out` as it frequently is for other ops.
  - Rationale for all being in `torch` namespace: the set of operators
    are so varied and unstructured that "dialect per namespace"
    doesn't result in anything resembling the typical MLIR dialect
    boundary expectations. We could maybe draw the boundary at
    dispatcher ops vs non-dispatcher ops, but that doesn't seem to
    really result in very much useful structure at this point in time.
  - Note: within the torch operator registry, we effectively have a
    mini-basicpy subdialect (already type-resolved), which is reasonably
    structured.
  - The existing Torch op interfaces are also removed -- now that we
    track the overload name, we can losslessly find the original
    operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
  `ReduceOpVariantsPass` that keys off certain traits (and perhaps
  eventually interfaces) to reduce variants of ops to a smaller set,
  ideally operating on immutable tensors and using surrounding ops to
  model the mutability/aliasing aspects.
  - Note: `torch.ns.unqual.overload` ops allow both immutable and
    mutable tensors (unlike the previous hard distinction in the common
    case). This is a premonition for a future change that will introduce a
    bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
  "ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
  It should look somewhat familiar, but the benefit of hindsight has
  allowed a lot of simplifications.

The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).

Recommended review order:
- Start at some of the new import IR, e.g. in
  `frontends/pytorch/test/node_import/prim.py`,
  `frontends/pytorch/test/acap_export/test_export_add3.py`, and other
  tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
  and associated generated files:
  - `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
  - `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
  traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
  `frontends/pytorch/csrc/builder`. Probably most interesting is the new
  code in `torch_to_mlir_utils.cpp` that has the logic to create the
  `torch.operator` ops or `torch.ns.unqual.overload` ops.

This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
2021-05-19 13:37:39 -07:00
Sean Silva 3a890aa26c Miscellaneous changes while trying to work on ResNet18
- Move frontend lowering pipelines to c++ (this helps with reproducing
  failures in npcomp-opt)
- Add debugging printouts when compilation fails on RefBackendTestConfig

The experience now when a test fails during MLIR lowering is now like this:
```
NPCOMP TorchScript Object Graph IR -> NPCOMP Backend IR lowering failed with the following diagnostics:
failed to legalize operation 'torch.global_slot'
Module does not conform to npcomp's backend contract. See dialect conversion legality information above.

Error can be reproduced with:
$ npcomp-opt -torchscript-to-npcomp-backend-pipeline /tmp/ResNet18Module.mlir
```

And when TorchScript->MLIR import fails it looks like this:
```
PyTorch TorchScript module -> NPCOMP Object Graph IR import failed with the following diagnostics:
unhandled prim operation: %18 : int = prim::min(%17) # /usr/local/google/home/silvasean/.local/lib/python3.9/site-packages/torch/nn/functional.py:4532:4
```

Also,
- Add `--filter=<regex>` to e2e test harness to filter tests.
- Add a few prim ops that were needed to import ResNet18
- Fix torch.prim.Loop.condition assemblyFormat (it previously would not
  round-trip in the case of no loop-carried variables)
2021-04-27 11:51:11 -07:00
Sean Silva fef1733e12 Fix issue with unused functions in torch::jit::CompilationUnit
As described in the code comment:

```
When we import TorchScript IR, we import their entire "compilation unit",
which can contain numerous functions unrelated to the current program,
which breaks torch-globalization-pipeline; for example, there can be
random functions referencing types that haven't been imported
as part of the root `torch.nn.Module` we imported. Those will
be unreferenced private functions which symbol-dce will clean up nicely.
```

This situation is really easy to hit in jupyter notebooks, where the
same cell is evaluated multiple times. That results in the same
class name (at the Python level, e.g. class `Foo` in the top-level
main module). Internally to PyTorch, it handles this situation by
mangling in a unique number to the names of ClassType's and such. When
we import the new ClassType's, we see not just the new
torch::jit::Function's in the CompilationUnit, but, also all the old
ones, which reference ClassType's that are not reachable from the
`torch.nn.Module` that we imported.

Note: there is no way to avoid importing the whole CompilationUnit
(including these old remnants) without doing a fairly complicated call
graph reachability analysis of which functions are reachable from the
methods of the ClassType's we imported. It turns out that once we are
inside MLIR, we model visibility correctly so that `symbol-dce`
"Just Works" for this use case. That is to say, this is not a quick
hack, but rather seems like a totally palatable long-term solution.
2021-04-20 12:00:35 -07:00
Sean Silva c4123d4d4d Add npcomp-verify-backend-contract pass.
This pass verifies that a given module satisfies the contract that we
have for backends. This is phrased as an "allowlist", because we want to
keep this interface tight. Also, this gives much better diagnostics than
a backend randomly crashing or failing to compile would (though they
could still be improved).

This was especially painful because if we had
`tensor<?x!numpy.any_dtype>` slip through, at some point RefBackend
would convert it to a memref type and trip the "verify type invariants"
assertion which gives no location or anything and crashed the process,
which was very unpleasant.

We implement this with the dialect conversion framework, which works
reasonably well and was quick to put together and familiar, but is still
very "op oriented". We probably want to make this hand-rolled
eventually, especially the error reporting (the most useful kind of
error for a dialect conversion user is not necessarily the best for this
use case). Also, in production, these error will go to users, and need
to be surfaced carefully such as "the compiler needs a type annotation
on this function parameter" which in general requires some special
analysis, wordsmithing, and overall awareness of the e2e use case (such
as how much we can lean into certain source locations) to provide a
meaningful user-level diagnostic.

Also, add `inline` to the current frontend lowering pass pipeline to
allow slightly more complicated programs that otherwise would fail on
shape inference.
2021-04-20 12:00:35 -07:00
Sean Silva f5dfa02523 Add `aten.mm` to linalg lowering.
This is our first op with error semantics, and stresses the system.

There are a few design notes of special interest:
- RefineTypes.cpp's note about shape inference in the presence of code
  that dynamically produces and error, and it is provable statically.
- ATenToLinalg.cpp's notes about future automation of the ATen->linalg
  path.
- The notes in Passes.td about using low-tech `std.assert` ops instead
  of `shape.assuming`.

Note: Doesn't work on IREE yet due to the `std.assert` op (needs to be
lowered to `vm.fail` on the IREE side).
2021-04-16 12:03:31 -07:00
Sean Silva 28a0f02746 Add support for compiling through IREE.
Recommended review order:
- Changes in frontends/pytorch/examples/
- Changes in python/npcomp/compiler/pytorch/backend/
- Boilerplate for the `npcomp-iree-backend-lower-linkage` pass.

This change separates out a
`npcomp.compiler.pytorch.backend.frontend_lowering` module that does the
common lowering for all backends. The individual compiler backends
`npcomp.compiler.pytorch.backend.{refjit,iree}` now accept a loosely
defined "TCP + scalar code" IR mix that will be formalized in the
future as the interface to codegen backends.

This also required adding a small pass
`npcomp-iree-backend-lower-linkage` which adds `iree.module.export` onto
functions, and layering that into the frontend flow. The pass doesn't
require a C++-level dependency on IREE, which is nice for now. TBD how
we are going to handle lists (we hope we can get away with sneakerneting
some td files and relying on loose IR compatibility).

Running through IREE requires the ability to import `iree.compiler` and
`iree.runtime`, which can be obtained as follows:
```
python3 -m pip install iree-compiler-snapshot iree-runtime-snapshot -f https://github.com/google/iree/releases/tag/snapshot-20210406.200
PYTHONPATH="${PYTHONPATH}:${MY_IREE_BUILD}/bindings/python/"
```

This patch makes it painfully clear that we don't have any e2e testing
harness to really plug into, and also don't have a usable Python API to
our compiler stack (something usable in a jupyter notebook).
That will be addressed in subsequent commits. We've been flying by the
seat of our pants with this `examples` directory that isn't subject to
any kind of testing or real usability concerns.
2021-04-09 13:15:07 -07:00
Sean Silva 2ab62aec12 MILESTONE: TorchScript unary tanh runs on RefBackend
This revamps the TORCH_TO_TCF_PASSES to reflect the new layering that we
are doing in the compiler. See comments there for the layering.

Also adds `frontends/pytorch/examples/torchscript_tanh_e2e.py` as an
"example". E2E testing story TBD (want to get IREE working first).
2021-04-07 11:06:34 -07:00
Sean Silva 30356c41c8 Add torch-adjust-calling-conventions pass.
This pass incorporates torch.type_bound info and also removes NoneType
returns (eventually it will rewrite tuple types too, but can't yet
because !basicpy.TupleType doesn't track element types).

Recommend looking at adjust-calling-conventions.mlir first to see what
it is doing, and holding your nose for the implementation of the pass.
I decided to implement this with the conversion framework, because it
gives us *some* goodies for type conversion -- mainly avoiding large
amounts of tricky RAUW dances. Unfortunately, the conversion framework
isn't a perfect fit for a couple reasons:
- the incorporation of torch.type_bound is a context-sensitive rewrite
  (requires looking at the arg attr, not just the type).
- NoneType conversion is 1->0, which requires some special handling
- (not implemented yet) 1->N tuple type conversions require special
  handling.
It's a little bit scary, but on balance doing it the other way would
have its own downsides.
2021-04-05 17:56:35 -07:00
Sean Silva 464feacba9 Bump llvm-project to 223dcdcfbe23affdf17ada7f023ee1872fd76160
- ModuleOp no longer has a terminator.
2021-04-05 17:56:35 -07:00
Sean Silva 7a4043b7c4 Add ability to compile from object graph ir. 2021-03-31 09:25:13 -07:00
Sean Silva 703428eff4 Add support for "trailing_" and "out" variants of various ops.
We already had the `promoteTrailingOutTensor` flag, but weren't using
it. A inplaceVariantKernelName flag needed to be added.

This change is a little dissatisfying, as the conversions done by the
RecognizeKernelsPass are currently non-orthogonal. In particular,
`kDropResultAndAliasArg0` probably won't work as intended if mixed with
these (we probably need to promote kDropResultAndAliasArg0 to not be an
arg-level thing anyway, as we have done with promoteTrailingOutTensor).

This involved adding a new op `numpy.overwrite_array`.

```
numpy.overwrite_array %arg2 overwrites %arg0 : tensor<2x3xf32>, !numpy.ndarray<[2,3]:f32>
```

This models the destructive update behavior. Note that in the above op,
we cannot simply RAUW %arg0 with a suitably conveted %arg2 (for example,
%arg0 might have uses that are not dominated by %arg2, or might have an
alias relation with some other array in the program). In general, we
need a pass analogous to "SSA-formation" which knows how to see through
these to uncover an underlying tensor program.

Also, add tanh_out_e2e.py/div_inplace_e2e.py and fix some bitrot in
refjit.py which is my running example I'm trying to get working.
2021-03-19 10:34:50 -07:00
Bairen Yi 53b01cb9ba Bump llvm-project to e31c77b1827fa4dd3511f21af11cfab18ecf6d38
Signed-off-by: Bairen Yi <yibairen.byron@bytedance.com>
2021-03-10 11:01:16 -08:00
Yi Zhang 7bb3b2eb6e Fix the import path in python samples 2021-03-02 13:40:08 -08:00
Sean Silva 3f4161635c Bump llvm-project to be7352c00d51f4358db3a23ed6a077f7cb48eafd
- TensorFromElementsOp -> tensor::FromElementsOp
- `cmpi "eq", ...` -> `cmpi eq, ...`. Same for `cmpf`
- syntax change for private func ops
- some changes to the python bindings
2021-01-21 11:16:55 -08:00
Stella Laurenzo 3f706473fd NFC: Delete npcomp python API and switch to upstream.
* Most updates are mechanical except:
  * python/npcomp/__init__.py and python/NpcompModule.cpp: New init/registration bits to replace some automatic things being done in the old bindings. Also an annoying linkage hack that I'll need to triage next.
  * NpcompModule.cpp: New python helpers for custom types and other hard to reach items (for the new bindings).
  * PybindUtils.h: Extended type casting so that the local extension can directly exchange Mlir* C types.
  * python/npcomp/dialects/*: Build support and ODS bindings for local dialects.
  * mlir_utils.py: Defines an ImportContext to replace the old/bad "Helper" class that tracked locations, and insertion points. This has a number of methods on it that would be good candidates to think about better ways to do them upstream.
* Also hoisted a few stand-alone samples to dedicated unit tests as they covered important things.
* More cleanup can be done, but keeping this patch as mechanical as possible to stay in NFC land (this is big enough).
2021-01-08 10:46:24 -08:00
powderluv 4237172bbf
Fix OSX builds. (#143)
--version_script doesn't work on OSX.
Shared libs are .dylibs on OSX.

TEST=Build on iMac Pro. M1 has other issues will be fixed later

Change-Id: I2bda46349a878b8265e273c05d8db6b46c0df633
2020-12-28 01:30:45 -08:00
Phoenix Meadowlark 699bf5df45
Add cos_e2e.py, test_utils and support for tensor inputs (#134) 2020-11-24 19:02:50 -08:00
Stella Laurenzo 3937dd14cb Add basicpy.numeric_constant op.
* Going through TODOs on the PyTorch side, this is a big cause of them (not being able to have constants for signed/unsigned).
* Added complex while in here since we're at the phase where it is better to just have things complete than partially done.
2020-11-24 16:44:40 -08:00
Stella Laurenzo bea0af419d NFC: Prefactor some basicpy ops in advance of more type work.
* Organizes the BasicPyOps.td file by function.
* Renamed `to_boolean` -> `as_predicate_value` (trying to consistently use "predicate" to refer to i1/low-level types and Bool/Boolean to refer to Python bool types).
2020-11-24 15:49:37 -08:00
Stella Laurenzo f03225b1f1 Bump llvm-project to f4f8a67aaf13bc66a2b7d55561b14a3724a5e0de.
* Incorporates source fixes.
* Uses upstream pybind11 detection logic.
* Patches CI.
* This may break the CI, which will need to be fixed manually in a followup.
2020-11-22 13:14:44 -08:00
Sean Silva ec1336a8a3 Make pytorch/backend/refjit.py a bit tidier
- Print out initial PyTorch IR.
- Rename ambiguous "frontend IR" to "TCF IR".
- Add newlines to prints
- Rename FRONTEND_PASSES to TORCH_TO_TCF_PASSES
2020-11-20 17:21:24 -08:00
Sean Silva 32b2dc6ce7 Revert "Bump llvm-project to 369c51a74b5327464e27e0749ca7ac59ac1349ce"
This reverts commit c60d7b4aae.

It seems to have tickled some sort of pybind version issue:
https://github.com/llvm/mlir-npcomp/runs/1433414550?check_suite_focus=true
2020-11-20 15:09:18 -08:00
Sean Silva c60d7b4aae Bump llvm-project to 369c51a74b5327464e27e0749ca7ac59ac1349ce 2020-11-20 13:03:24 -08:00
harsh-nod 67d6694fdc
Update PYTHON cmake variables to Python3 (#121)
After the recent change of cmake variables
from PYTHON_INCLUDE_DIRS to Python3_INCLUDE_DIRS
and PYTHON_LIBRARIES to Python3_LIBRARIES, there were
a few files that still had references to the old
variables. This patch fixes that.
2020-11-17 16:04:14 -08:00
Stella Laurenzo a7ff87a922 Sever C++ level depend on IREE and rebase on exe and python interface.
* IREE doesn't have proper install support, so there is some temporary hoaky hacking in our CMakeLists.txt to shuttle some symlinks around.
* Reworked the original numpy e2e with IREE test to pipe through iree-translate.
* Removed all of the C++-level dependencies.
* Will generalize and apply to the PyTorch backend in a followup.
2020-11-16 21:32:56 -08:00
Stella Laurenzo b4c7ae1e0c Repurpose numpy-compiler compiler/runtime flow for PyTorch.
* A bit gross because I took the chance to upgrade all of the backend bits to the new MLIR Python bindings and we still co-mingle the old and new for now.
* Since the Python created PassManagers are configured for explicit nesting, I had to upgrade some of the pass pipelines to be explicit.
* The demo in mul_maximum_e2e.py now compiles, runs through PyTorch and through the JIT, prints and asserts the same results.
* I am not claiming that this is the prettiest API in this patch: consider that this is just directly using low-level APIs and there should be an intervening high level API.
2020-11-11 10:38:13 -08:00
Stella Laurenzo d1488c8572 Move existing npcomp.compiler -> npcomp.compiler.numpy.
* Makes room for the pytorch compiler.
* Some common things can be hoisted from the numpy side but some more consolidation needs to happen first.
2020-11-10 19:26:40 -08:00
Stella Laurenzo 30cfc6499f Create public API for torch_mlir python code.
* Adds a trampoline/loader 'torch_mlir' module.
* Plumbs through the MLIR python Context and Module creation, interoping with the MLIR Python API (resolves TODO on creating with own context and accessing the module being built).
* Inter-module Python API interop is still a bit rough but workable via the capsule mechanism. Can be evolved later.
* Exports the frontends/pytorch python sources to the project python/ build directory.
* Requires D89294 to land.
2020-10-13 16:36:49 -07:00
Stella Laurenzo af4edb63ae Start reworking towards a shared library build.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.

Sizes with dynamic linking (stripped, release, asserts enabled):
  libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
  libMLIR.so: 31M
  _npcomp.so: 1.6M (python extension)
  _torch_mlir.so: 670K (python extension)
  npcomp-capi-ir-test: 6.3K
  npcomp-opt: 351K
  npcomp-run-mlir: 461K
  mnist-playground: 530K

Still more can be done to normalize and optimize but this gets us structurally to the starting point.
2020-10-09 16:02:58 -07:00
Stella Laurenzo 0d91885965
Add initial python bindings for c10 dispatcher internals. (#55)
* Exposes the op registry via a get_registered_ops method.
* Moves the aten dialect generation scripts in prep for integrating them with this facility.
2020-09-24 16:26:29 -07:00
Stella Laurenzo bc7c852379 Add more ops from the original integration.
* Still need to add a systematic mechanism for discovering gradient ops.
* Work needed on the various _ suffixed inplace ops.
* Other randoms still not mapped.
* Outside of this commit, I do have enough commented/reworked to roughly build but that will take another handful of commits to get going.
2020-09-18 19:11:18 -07:00
Stella Laurenzo a74a98094b
Add a new python script to auto-generate ATen op ODS definitions. (#43)
* Add a new python script to auto-generate ATen op ODS definitions.

* There is still some work on some of the ops to annotate correct types.
* The ODS is not actually included into the dialect yet, but I'd like to commit it so that we can track changes.
* Will reconcile this with the ops produced by the existing script in a followup. Still need to do some more iteration to reach parity.
2020-09-16 16:21:24 -07:00
Stella Laurenzo 97d83f786a Bump submodule versions.
* llvm-project: b5924a8e27536d19dd5c4d302db29fb6163d5faa
* mhlo: 848ca244d20f045b7921da55a98a04d95ef94f0e
* Multiple breakages that need to be fixed.

Fixes:
* Refactor dialect registration
* Remove all kindof methods (Casting functionality has been added upstream and is implicitly
available, see https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types/1547.)
* Update dialect registration to comply with https://reviews.llvm.org/D85495.
* Remove type kinds and update some changed dialect signatures.
* Upgrade ATen dialect to match upstream needs.
  * Move dialect registration to tablegen.
  * Register the ListType in tablegen.
  * Change dialect initialization signature.
* Use TypeSwitch in MlirIr location printer.
* Remove global registry depends from npcomp-opt.
* Change LowerToLLVM to pass an MLIRContext vs an LLVMDialect for type creation.
* Remove dep on MLIREDSCInterface that is removed upstream.
* Thread through the DialectRegistry for opt and python-like tools.
* Modernize pass registration (This was forced because the GEN_PASS_REGISTRATION code now generates inline functions vs literal pass registration statements)

Co-authored-by: Marius Brehler <marius.brehler@iml.fraunhofer.de>
2020-09-08 13:26:42 -07:00
Stella Laurenzo d1ed6d260e Initial work on a torch op registry.
* This extracts metadata from python invocations (nearly) sufficient to generate ODS and a Torch IR translation table for most of the ops.
* It also has the side effect of creating a data structure with meaningfully runnable examples suitable for an automated regression test.
* There are some ops that are sufficiently complex/weird (like _convolution) that we'll just manually handle those.
* See example output: https://gist.github.com/stellaraccident/60a58457b15e9184e224fa98a2658769
2020-08-28 15:20:55 -07:00
stephenneuendorffer 31b3041e88
Add pytorch interface to ATen Dialect (#30)
This patch adds a pytorch interface to npcomp.  This interface is modeled
after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar
to a gpu device or the xla backend).  Usage is intended to be something like:

  dev = torch_mlir.mlir_device()
  t0 = torch.randn((4,4), device=dev)
  t1 = torch.randn((4,4), device=dev)
  t2 = t0 + t1
  t2_mlir = torch_mlir.get_mlir( t2 )
  t2_cpu = t2.to('cpu')

In this case t2_cpu would contain the result of the computation, and t2_mlir
contains the mlir description of the computation.  Note that this also
properly returns backward paths synthesized by pytorch.  There are several
parts of this:

1) A tensor type (implemented by tensor.* and tensor_impl.*)
2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*)
3) a temporary IR (implemented by ir.cpp)

There is also a reference lowering directly from the ATen dialect to C
function calls consisting of two parts:

1) The driver that uses the IR to generate MLIR, run Passes and compile the
result using mlir::ExecutionEngine (implemented by jit.cpp and
mlir_gen.cpp)
2) A runtime library implemented by lib/aten_ops.cpp.  Most of the operations
are implemented by callbacks into the torch C++ libraries.

Some aspects of this are known to be less than optimal, in particular:
1) There's some function definitions that don't live in the file corresponding
to their declaration.
2) More aspects of this (e.g. the IR) seem like they should be automatically
generated.
3) It's unclear to me how much of the 'IR' is actually necessary, or whether
MLIR could be created on the fly.

Note that this code is licensed in a way similar to pytorch, with the
intention that eventually (when npcomp reaches some maturity) it should be
pushed there.  (see frontends/pytorch/LICENSE)  The code is also structured
much closer to the pytorch coding style than the LLVM coding style.
2020-08-21 11:22:47 -07:00
stephenneuendorffer a5f3b16f92
Fix precommit workflow (#13) 2020-08-06 23:51:05 -07:00
stephenneuendorffer 44af7a6d30
[cmake] Updates for basic shared library support (#7)
Mostly this is CMake cleanup.  Several library dependencies are missing, which
is often revealed with shared library builds.  Also, it's generally bad to
link directly against LLVM libraries because it fails when using
LLVM_LINK_LLVM_DYLIB.  MLIR will pull in libLLVM.so, and there will be
duplicate linkage with the the explicit libraries.  There may need to be more
refactoring here.
2020-08-05 14:49:18 -07:00
Stella Laurenzo 186dfd39ea Remove use of namedtupled defaults kwarg.
* It is incompatible with python < 3.7.

Fixes #6
2020-08-04 18:41:22 -07:00
Stella Laurenzo 3efbbe8735 Misc fixes to enable building/testing on manylinux2014 images.
* Since the manylinux images do not hard-link against python libs (resolving them at runtime), the module must be built without resolving undefined references.
* For some reason, builds on this platform are stricter, exposing dependency ordering issues.
* The CMake bits to build the extension are still somewhat of a mess. I have better versions both upstream and in IREE and will be reconciling. For now, don't look too closely.
2020-08-04 17:26:15 -07:00
Stella Laurenzo 38abe99805 Collapse python_native/ into python/.
* These were separated originally for layering reasons that no longer apply.
* Most of the python extension code is under lib/ with just the module setup in python/.
2020-08-03 17:46:34 -07:00
Stella Laurenzo 29da57e631 Update sample for refjit invocation. 2020-07-10 22:57:26 -07:00
Stella Laurenzo 0356f65dcd Wire through codegen and runtime dependencies.
* Enables e2e test.
* With what I've learned in upstream about test directory layout, I can consolidate most of the separate directories we have for these things. Will do that in a followup.
* Not pleased with the LLVM global initialization depends but serviceable for now.
2020-07-10 22:57:26 -07:00
Stella Laurenzo 9e4a62fc71 Allow JITModule passes to be built separately.
* Re-introduces frontent/backend split.
* Adds a (very) trivial shape refinement pass.
2020-07-10 22:57:26 -07:00
Stella Laurenzo aea05d68d7 Initial python plumbing to interface with the refjit backend. 2020-07-10 22:57:26 -07:00
Stella Laurenzo 2e40ce05ad Remove old sample 2020-07-08 23:06:39 -07:00
Stella Laurenzo 70595bd87e Add sample for exercising the compiler. 2020-07-08 22:58:20 -07:00
Stella Laurenzo aeb422b030 Some fixes to get npcomp building and passing on windows.
There is more that can be done here, but this gets it minimally working.
2020-07-01 21:28:04 -07:00
Stella Laurenzo 2d4b0843c1 Fix evaluation message reporting and add checks to tests. 2020-06-29 17:48:17 -07:00
Stella Laurenzo 046751254f Refactor old tracing tests and remove deprecated ops.
* Old doctests to run under lit.
* Old custom filecheck tests -> pytest directory (under lit).
* Rename some old ufunc ops in the tracer.
2020-06-29 16:19:03 -07:00
Stella Laurenzo 7ca292ade5 Add partial evaluator for explicit numpy ufuncs.
* This enables emission of "numpy.add(a, b)" and several dozen others.
* Will deprecate original ufunc infra in a follow-on.
2020-06-29 15:27:39 -07:00
Stella Laurenzo 1024c508f8 Move numpy compiler support to new directory. 2020-06-29 13:02:34 -07:00
Stella Laurenzo a4f3ce1ed3 Add value coding for ndarray.
* This lets us import arrays from the outer environment, which is the first step to actually handling numpy ops.
2020-06-28 18:42:08 -07:00
Stella Laurenzo bccfd5f6fc Refactor environment.py into components.
* Creates a new top level Configuration class
* Adds a module for creating test configs, getting some hard coding out of core classes
2020-06-28 16:52:25 -07:00
Stella Laurenzo 7bd5733d38 Add "template function" ops and importer code.
* This starts to lay down the infra for reasoning about calls
* Adds the importer code to generate IR for function calls of compiler recognized static functions.
2020-06-26 18:36:36 -07:00
Stella Laurenzo e45287d83e Rename 'macro' nomenclature to 'partial eval'. 2020-06-26 13:50:51 -07:00
Stella Laurenzo dd6a4e638b Add macro facility and use it to enable module and namedtuple attribute resolution. 2020-06-25 23:11:32 -07:00
Stella Laurenzo e5958d820f Add constant resolution from globals and builtins. 2020-06-22 18:42:32 -07:00
Stella Laurenzo f791909a25 Factor name resolution and constant creation to a new environment facility. 2020-06-22 18:15:56 -07:00
Stella Laurenzo b3ecd57b29 Add a sample test that exercises short circuit control flow. 2020-06-19 17:25:18 -07:00
Stella Laurenzo b811db4b76 Wrap the IREE compiler flow in a one stop API. 2020-06-19 17:17:22 -07:00
Stella Laurenzo 529873d13c Wire up IREE compilation and runtime in a new backend test.
* Adds python bindings for invoking flow, HAL, and VM lowering pipelines.
* Adds pythong bindings for translating to VM module flatbuffer.
* Adds a new backend_test/iree directory and configure lit to find the IREE python rt bindings.
* Open code a simple_invoke.py that exercises the whole pipeline (need real APIs for a lot of this).
* Fails when invoking the function because I never implemented argument marshaling for scalars :(
* Plenty of stuff to do tomorrow.
2020-06-19 00:30:34 -07:00
Stella Laurenzo b21b5322f6 Basicpy conversion to IREE+std skeleton and first conversions.
* Conversions to std for numeric binary expressions, numeric to_boolean, and numeric comparisons.
* Added folders to constant ops to comply with requirements of the pass system.
* Extended the frontend with parameter/result annotation processing for primitives (can specify types for function arguments).
* Added (empty) directory/sources for IREEVM conversions. These are only enabled if IREE is enabled.
2020-06-13 23:45:43 -07:00
Stella Laurenzo 2ba8296151 Add script tools/format_source.sh and run it on all python and c++ sources. 2020-06-13 14:53:54 -07:00
Stella Laurenzo c3d4436397 Introduce a Target class and use it to define generic 32 and 64bit variants. 2020-06-13 14:43:10 -07:00
Stella Laurenzo 750541e9a9 Extend type inference so that it works across conditional boundaries.
* The implementation is still limited but gives something to build on.
2020-06-10 21:33:17 -07:00
Stella Laurenzo 917fd94f94 Add limited support for function arguments. 2020-06-10 19:17:29 -07:00
Stella Laurenzo e3fd22a035 Add a (very) basic type inference pass for basicpy.
For simple programs, this gets us enough typing to lower to real backends.
2020-06-10 19:04:05 -07:00
Stella Laurenzo 6728503fcf Remove unused assignment 2020-06-09 18:35:21 -07:00
Stella Laurenzo 340f109742 Add implicit return and expression statements where the value id discarded. 2020-06-09 18:34:07 -07:00
Stella Laurenzo 2bb4cdf4e7 Split frontent.py into importer.py. 2020-06-09 17:16:36 -07:00
Stella Laurenzo 22cbe044c2 Add IfExp emission. 2020-06-09 17:10:52 -07:00
Stella Laurenzo e18e8e0a96 Add boolean/logical operations (and, or, not).
* Adds a new to_boolean op to evaluate a value as a truthy i1
* Uses cascading scf.if ops to properly evaluate and/or sequences (short-circuit and original value returning)
* Adds a helper to construct select ops and uses it to implement 'not'
2020-06-09 00:01:21 -07:00
Stella Laurenzo 44f7e22f4d Remove 2-arg compare special case and use common utility to do sub evaluation. 2020-06-08 17:54:14 -07:00
Stella Laurenzo 1ef3614682 Add support for short-circuit comparisons with scf.if. 2020-06-08 17:52:07 -07:00
Stella Laurenzo a32219c3bb Refactor things so that an SCF mixin dialect helper can be used.
* Makes the OpBuilder an input to the DialectHelper.
* The containment hierarchy can be simplified further.
* There are still only a few places this is instantiated, so opting for working over great.
2020-06-08 16:10:51 -07:00
Stella Laurenzo 85b724e70c Adds ODS and import support for binary_expr and binary_compare ops.
* Currently only supports non-short-circuit comparisons.
2020-06-08 13:46:06 -07:00
Stella Laurenzo 7c176ed872 Add None constants. 2020-06-07 16:21:00 -07:00
Stella Laurenzo 4cd604f2a2 Fix AST constant handling to be compatible with 3.8 (the right way). 2020-06-07 16:16:19 -07:00
Stella Laurenzo 72499e0319 Add bytes constants. 2020-06-07 16:00:29 -07:00
Stella Laurenzo a1e6ff4ab7 Add ellipsis constants. 2020-06-07 15:49:39 -07:00
Stella Laurenzo f3829b1d4f Add string constants. 2020-06-07 15:46:28 -07:00
Stella Laurenzo 869228e316 Add bool constants. 2020-06-07 15:15:19 -07:00
Stella Laurenzo af4466197e Add lit test suite for python compiler.
* Adds a test for simple constants and fixes issues.
2020-06-07 14:29:39 -07:00
Stella Laurenzo 28048337ae Fix issue with float_attr. 2020-06-06 22:01:38 -07:00
Stella Laurenzo 7b95d860e9 Add sample for ast extraction. 2020-06-06 21:29:20 -07:00
Stella Laurenzo 0cc0a7165e Add basic AST -> basicpy dialect function extraction.
* Extends the bindings to support locations.
* Various other things necessary to extract a function with simple numeric expressions.
2020-06-06 21:24:28 -07:00
Stella Laurenzo 60f132b26f Add pass registrations and a simple compilation example from python.
* Got side-tracked hunting down a vague-linkage RTTI issue due to not anchoring key methods in PassOptions.h to a module.
* Took the path of least resistance and just added the option to build LLVM with RTTI. I know how to fix this but would like to do some broader upstream fixes versus just hunting/pecking/working around in this project.
2020-06-03 23:58:58 -07:00
Stella Laurenzo fddf41ca92 Add python binding for running passes. 2020-06-03 01:29:59 -07:00
Stella Laurenzo f2985e0901 Add implicit constant capture.
We want more sophisticated capture later, but this allows basics to function.
2020-05-08 17:55:02 -07:00
Stella Laurenzo 8ae71a9551 Add MLIRContext.dense_elements_attr to create an attribute from a python buffer/array. 2020-05-08 17:36:07 -07:00
Stella Laurenzo a91b0bfbe1 Add numpy.get_slice op and wire it up to the tracer. 2020-05-08 16:04:58 -07:00
Stella Laurenzo db0b0ef1b2 Switch sample tracer to emit builtin_ufunc globals instead of the impl versions. 2020-05-08 14:35:13 -07:00
Stella Laurenzo 0092b912ab Update all python imports to be absolute and use a .env file to set the path correctly.
This makes things just work for debugging in VSCode.
2020-05-06 23:25:04 -07:00
Stella Laurenzo 3611958b11 Move python native library to python_native/_npcomp...so.
This allows binary and source packages to exist at different physical paths.
2020-05-06 22:44:12 -07:00
Stella Laurenzo 680e11ae62 Rename basicpy_None_type to basicpy_NoneType to match native spelling.
* Also adds Basicpy.py to tests.
2020-05-06 19:07:50 -07:00
Stella Laurenzo 644d9fb0d3 Remove spammy warnings and filecheck info in run_tests.
* This suppresses a warning that arises from using "-m" to launch a module contained in a package that arranges modules via __init__.py. It seems irrelevant to the use case of running doctests.
2020-05-06 18:48:12 -07:00
Stella Laurenzo 6b7c913e0b Add DialectHelper for Basicpy dialect.
* Involved native code for the types and slot_object_get ops.
2020-05-06 18:26:03 -07:00
Stella Laurenzo 4ebf972503 Merge ir.Ops and ir.Types into ir.DialectHelper.
This will aid in managing hierarchies of custom dialect helpers.
2020-05-06 18:26:03 -07:00
Sean Silva aa9ffc3a11 Delete npcomp.edsc_test from python/run_tests.py 2020-05-06 18:24:44 -07:00
Stella Laurenzo 714bc01c02 Bump llvm version to 0c4aab27b3da05dd1b0c0c39472525325fda5e23.
* Fixes some api-change breakages.
* Deletes edsc module now that the IR bindings are working (and since it broke with this update).
2020-05-05 21:00:49 -07:00
Stella Laurenzo 502ef8f195 Create skeleton for 'Basicpy' dialect.
* It is time to start adding more python mechanisms.
* Running into this for materializing slice() objects.
2020-05-04 17:48:02 -07:00
Stella Laurenzo ebb5bcf6af Handle np.transpose() and ndarray.T shortcut.
* Just the form without explicit permutation for now.
2020-05-04 16:20:36 -07:00
Stella Laurenzo a5f755d406 Implement __array_func__ hook and use it to trace np.dot.
* Creates an abstraction/registry around emitters (intended to generalize to AST compilation as well).
* Reworks ufuncs to use the same mechanism as array funcs.
* Adds the numpy.dot op.
2020-05-04 15:47:01 -07:00
Stella Laurenzo 1f54838d2e Add hook for __array_function__ and (failing) np.dot sample. 2020-05-03 13:39:30 -07:00
Stella Laurenzo a38a1e2850 Cleanup python namespace a bit for standalone use. 2020-05-02 21:54:13 -07:00
Stella Laurenzo c89a35f97f Rework the poc tracer to be structured how intended. 2020-05-02 19:52:21 -07:00
Stella Laurenzo 0805013716 Rename ufunc_call op builder for consistency. 2020-05-01 19:06:10 -07:00
Stella Laurenzo 78a8e6ec9e Add enough python bindings to build functions and ufunc calls. 2020-05-01 18:44:06 -07:00
Stella Laurenzo ba0c96b51a Add python side Numpy dialect wrapper. 2020-05-01 10:38:52 -07:00
Stella Laurenzo 23a9ffaabe Add wrappers for block and operation iteration.
I don't technically need this now but adding while the train of thought is fresh.
2020-05-01 10:16:19 -07:00
Stella Laurenzo c8740fd866 Start splitting Py* types into a header so that further C++ interop can be built. 2020-04-30 19:23:18 -07:00
Stella Laurenzo ec0f6b4b22 Add MLIRContext and ModuleOp python bindings with asm parse/print and diagnostics. 2020-04-30 17:14:03 -07:00
Stella Laurenzo 67d38db1e2 Start defining new IR bindings and cleanup python init. 2020-04-30 16:00:00 -07:00
Stella Laurenzo d3b6e1767a Add stub numpy dialect. 2020-04-26 17:20:58 -07:00
Stella Laurenzo ac302ea916 Update readme with simple config 2020-04-26 16:32:10 -07:00
Stella Laurenzo 9ee2f6ff7f Initial commit of python boiler-plate. 2020-04-26 15:50:23 -07:00